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Abstract. There is a feature common to both non-rigid registration of a group of images and building a model of a
group of images: a dense, consistent correspondence across the group. The former aims to find such a correspon-
dence, whilst the latter requires it. This paper presents the theoretical framework required to unify these two areas,
providing a groupwise registration algorithm, where the inherently groupwise model of the image data becomes an
integral part of the registration process. The performance of this algorithm is evaluated by using the concepts of
generalisability and specificity, which provide an independent metric for comparing various registration algorithms.
Experimental results on MR data of brains for various pairwise and groupwise registration algorithms is presented,
and demonstrates the feasibility of the combined registration/modelling framework, as well as providing quantitative
evidence for the superiority of groupwise approaches to registration.

1 Introduction
Non-rigid registration (NRR) is being increasingly used as a basis for medical image analysis, with applications that
include structural analysis, atlas matching and change analysis. There are well-established methods for pairwise image
registration(for a review, see e.g., [1]), but often it is necessary to register a group of images. This can be achieved
by repeatedly applying pairwise registration, but there is no guarantee that the solution is unique – depending on the
choice of reference image, representation of warp, and optimisation strategy, many different results can be obtained
for the same set of images. Clearly, this does not form a satisfactory basis for analysis. Our approach is to consider
NRR and modelling a group of images [3] as complementary problems: the aim of NRR is to find a meaningful dense
correspondence across the group, whereas modelling requires it. Building on the optimal shape model approach of
Davies et al [4], we define a minimum description length (MDL) criterion for image model quality, and show that a
unique groupwise correspondence can be defined by explicit minimisation of this criterion. NRR and modelling have
been combined previously [6], however this required an initial manual labelling of every image. As regards groupwise
non-rigid registration, several authors have considered the problem of choosing the best reference image(e.g., [2, 5]).
These approaches involve defining a series of independant criteria for what constitutes image matching, how image
deformation is weighted against spatial deformation and so on. The advantage of our approach is that we use a single
criterion – minimum description length – which can in principle determine not just the groupwise correspondence
across the set of images, but also the optimal spatial reference frame, the optimal reference image and, potentially, the
optimal model parameters (e.g., number of modes of the model retained). It hence unifies registration and modelling
within asinglecoherent theoretical framework.
In this paper, we present a brief description of our framework for groupwise registration, including the MDL objective
function, the method of optimisation, and metrics for evaluating different groupwise correspondences. We evaluate the
performance of a range of pairwise and groupwise approaches to registering a set of brain images, and show that the
groupwise approach gives quantitatively better performance than pairwise.

2 Spatial & Pixel/Voxel-Value Transformations
The correspondence across the group has to be consistent, and

Figure 1: A spatial warp ωi from training frame Ti to
reference frame R. X0 (black filled circles) is the set
of regular voxel positions, with the grey filled circles
being the warped voxel positions ωi(X0).

one way to ensure this is to define all correspondences w.r.t. a
spatial reference frame. We hence define the following basic
notational conventions , taking as our example the simplest
case of a spatial warp directly between a training image frame
and a reference frame (see Fig. 1):
• X0 is the regular grid of pixel/voxel positions on which each
of our images is defined.
• R is the spatial frame of the reference. A reference image
IR(X0) is the values of a functionIR at the positionsX0.
• The set ofN training images{ITi(X0) : i = 1, . . . N}.
Imagei, functionITi in spatial frameTi.
The dense correspondence between a training image frameTi and the reference frameR is defined by a spatial warp
ωi : x ∈ Ti 7→ ωi(x) ∈ R. The warpωi also induces a mapping between the function spaces (that is, it warps images
between frames). Mathematically, there are two such mappings:
The push-forward: ωi : ITi 7→ Iωi

Ti

.= ωi(ITi), Iωi

Ti
(ωi(x)) .= ITi(x)

The pullback: ω∗i : IR 7→ I∗R
.= ω∗i (IR), I∗R(x) .= IR(ωi(x))
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Because of re-sampling issues for regular and ir-

Figure 2:Top: The spatial transformations (black arrows) between
reference, intermediate and training image frames. Bottom: The
corresponding combined (spatial and voxel-intensity) transforma-
tions (broad grey arrows) between images.

regular pixel grids, the pullbackω∗i is easier to
compute than the push-forward mapping, so that
we will use thepullback mapping wherever pos-
sible, where the direction of flow of image infor-
mation is in theoppositedirection to that of the
spatial mapping. The ability to map images be-
tween frames means we can compare images. We
will denote a general discrepancy-image by∆I.
In the example above, a discrepancy image in the
frameTi is: ∆ITi

(X0) = ITi
(X0)− I∗R(X0) =⇒

(∆ITi◦ω∗i )IR(X0) ≡ ITi
(X0) where(∆ITi

◦ ω∗i )
is taken to denote the composition of a pullback
mappingω∗i and a voxel-value deformation∆ITi

.
The pixel/voxel-value deformation in this case is
defined such that when applied to the warped reference imageI∗R(X0) it exactly recreates the training set image
ITi

(X0). It is important to note that in general these two classes of transformationsdo not commute. We now have a
general class of image deformations, composed of a spatial part and a discrepancy image part – we will denote such a
general combined deformation by capital greek letters (e.g.,Ωi). A more complicated situation is shown in Fig. 2. This
shows the reference image being transformed into a training imageITi

, by a sequence of two combined transformations
Υi thenΩi. We take this approach since, if we are to model combined transformations across the group of images, we
need them to be applied in acommonframe. So, the spatial transformations{υi} and the discrepancy images{∆iIR}
are all applied in the reference frameR, hence can be modelled across the group. The spatial warpωi is now just from
the training frameTi to the intermediate frameMi, the corresponding combined warpΩi being constructed using the
pullbackω∗i and the discrepancy image∆ITi , which is calculated in a manner analogous that given previously, but with
the intermediate imageIMi taking the place of the reference imageIR.

3 The Objective Function
As we explained in the Introduction, we have chosen to define the optimal groupwise non-rigid registration as that
which minimises an objective function based on the minimum description length (MDL) principle [8]. The basic idea
behind MDL is that we consider transmitting our dataset to a receiver, encoding the dataset using some model. Using
the structure and notation defined in the previous section, the data we have to transmit is the reference imageIR and the
set of combined deformations{Υi,Ωi} that enable us to exactly reconstruct each training image. The total description
length can hence be decomposed thus:

Ltotal = LR(R, IR) +Lparams +Lgroup({Υi}) +Lresiduals({Ωi})
Reference frame & ref-
erence image

Parameters of group-
wise model

Encoded using group-
wise model

Encoded residuals

(1)

Actual description lengths are computed using the fundamental result of Shannon [10] – if there are a set of possible,
discrete events{A} with associated encoding-model probabilities{pA}, then the optimum code length required to
transmit the occurrence of eventA is given by:LA = − ln pA nats.1 See [11–13] for details as to the explicit calculation
of description lengths.

4 The Algorithmic Framework
4.1 Initialisation
In [11], an algorithm was presented to find an initial correspondence using MDL. The structure of the algorithm
followed that shown in Fig. 1. The free variables were the set of spatial warps{ωi}, initialised to the identityI, and the
reference image was taken to be the mean of the training images, pulled-back using the inverses{ω−1

i }. This algorithm
was fully groupwise, in that changes to any of the{ωi} change the reference, hence change the description length for
all of the images in the set. However, the calculation of the inverse warps (or alternatively the push-forward mappings
generated by{ωi}) is computationally expensive. We propose here a computationally cheaper initialisation algorithm,
within the structure shown in Fig. 2. We keep the idea from the algorithm presented in [11], of initial image estimates
based on averages of pushed-forward training images, but instead choose to populate the intermediate images, using
the leave-one-out means:

IMi(X0) =
1

N − 1

∑

j 6=i

[ω−1
j

∗
(ITj )](X0), (2)

with {υi = I}. We do not explicitly assign a value to the reference image. But we would expect the intermediate images
to mutually converge as the algorithm progresses and the images are brought into alignment, so that{∆iIR 7→ ∅}.

1Thenat is the analogous unit to thebit , but using a base ofe rather than base 2.



Algorithm 1 : MDL NRR Initialisation

1: {ωi = I, i = 1, . . . N} %:Initialize warps to the identity.

2: Repeat
3: Randomize the order of the set of training imagesITi(X0), indexed byi.
4: For i = 1 to N do
5: OptimiseLinit({ωk}) w.r.t. spatial warpωi.
6: Update Intermediate Images{IMj (X0) : j 6= i}. %:Using equation (2).

7: End
8: Until convergence

The true description length is estimated thus :
(3)

Linit({ωi}) = 1
N

∑
i

LHist(IMi
(X0)) +

∑
i

L(ωi) +
∑
i

L(∆ITi
(X0)).

Estimate of LHist(IR(X0)) Spatial Warps Discrepancy Images

The pseudocode for the initialisation algorithm is given in Alg. 1.

4.2 Groupwise Models

We have shown how to initialise the registration algorithm, we now have to consider the explicit groupwise model.
One method would be to build some default generative model of the set of deformations{Υi}, and then search within
the space of this model. However, this approach suffers from two drawbacks; firstly, the use of a default model (such
as a gaussian) would bias the results, since it would tend to force the deformations to have a gaussian distribution,
rather than finding the best deformations. The second drawback is computational – if we alterΥi, we have to then
re-calculateΩi so that the combined deformation does indeed re-create our target training imageITi(X0). This means
that we have to re-calculate the intermediate imageIMi(X0), which means either calculating a pushforward mapping
via υi, or a pushback viaυ−1

i , both of which are computationally expensive.

Algorithm 2 : MDL NRR & Groupwise Model Building

1: Run Algorithm 1 %:Output is {IMi
(X0), ωi, ∆ITi

(X0)}
2: υi ⇐ I %:Initial Shared frame for all Intermediate Images

3: IR(X0) ⇐ 1
N

∑
i IMi(X0) %:Estimate Reference as Mean

4: ∆iIR ⇐ IMi(X0)− IR(X0) %:Maintain Intermediate Images

BUILD & TEST GROUPWISE MODEL OF {Υi ≡ υi ◦∆iIR}
5: (IR, {∆iIR, υi, ωi, IMi , ∆ITI}) ⇐ TEST-MODEL (IR, {∆iIR, υi, ωi})

MAIN LOOP

6: Repeat
7: Repeat
8: Randomize the order of the set of training imagesITi(X0), indexed byi

OPTIMISE WARPS ωi

9: For i = 1 to N do
10: OptimiseLtotal w.r.t. spatial warpsωi. %: Ltotal calculated from eq. (1)

11: End
12: Until convergence

RE-BUILD MODEL

13: (IR, {∆iIR, υi, ωi, IMi , ∆ITI}) ⇐ TEST-MODEL (IR, {∆iIR, υi, ωi})
14: Until convergence

Function TEST-MODEL : BUILD & TEST GROUPWISE MODEL

1: Lold ⇐ Ltotal(IR, {∆iIR, υi, ωi}) %:Description Length L before modelling, eq.(1)

2: υnew
i ⇐ ω−1

i ◦ υi %:Put all spatial warp into υi

BUILD MODEL

3: (Inew
R , {∆new

i IR, υnew
i }) ⇐ MODEL (IR, {∆iIR, υnew

i })
4: ωnew

i ⇐ υnew
i ◦ (υ−1

i ◦ ωi) %:Resetωnew
i to maintain spatial correspondence

5: Lnew ⇐ Ltotal(Inew
R , {∆new

i IR, υnew
i , ωnew

i }) %:Description Length after modelling

6: If Lnew ≤ Lold then
7: ωi ⇐ ωnew

i , υi ⇐ υnew
i , IR ⇐ Inew

R , ∆iIR ⇐ ∆new
i IR %:Accept new values

8: IMi(X0) ⇐ (υi ◦∆iIR)IR(X0) %:Reset Intermediate Images

9: ∆ITi(X0) ⇐ ITi(X0)− [ω∗i (IMi)](X0) %:Reset discrepancies in Training frame

10: End



We take an alternative approach, which is to optimise the{ωi}. As in Alg. 1, this only involves computing the pullback
ω∗i . So, after we have optimised the set{Ωi}, we then transfer of much of this combined deformation as possible from
the intermediate frameMi to the equivalent deformation applied in the reference frameR. We can then construct a
model in the reference frame. The proposed algorithm is given in Alg. 2. Lines 1-5 are just the initialisation stages,
which run the previous initialisation algorithm. The transfer between{Ωi} and{Υi} is given in lines 2-3 of the function
TEST-MODEL. An important point to note is in line 4 of that function – we maintain the spatial correspondence that we
have previously found, despite moving spatial warps between frames. We then build a model of the set of combined
deformations{Υi = (υi ◦∆iIR)} and the reference imageIR(X0). The modelled deformations are not necessarily
the same as the input deformations to the modelling process, which is the reason for the resetting in line 5. We then
accept this model provided that it decreases the total description length.

5 Implementation Issues
Consider the relation of spatial frames for the groupwise algorithm (e.g., see Fig. 2 and Alg. 2) – it is clear that we
require a description of spatial warps{ωi, υi} that allows us to efficiently invert and concatenate warps, as well as a
description which allows us to represent a set of warps (i.e.,{υi}) within a common representation for the purposes
of modelling. Such a description is provided by spline-based formulations which interpolate the movement of general
points from the movement of a set of nodes/knotpoints, where the knotpoints can takearbitrary positions. In the
experiments which follow, we use both the clamped-plate spline, and an efficient spline based on the piecewise-linear
interpolation of movements across a tesselated set of knotpoints in either 2D or 3D. Successive optimisations of the
set{ωi} in Alg. 2 are calculated by adding knotpoints to the previously-optimised set (hence increasing the resolution
of the spatial warp). These knotpoints are also chosen in a data-driven manner (e.g., image features such as edges, or
places of high discrepancy – see [7,9] for further examples of such data-driven techniques). The optimisation scheme
for the knotpoints is a simple gradient descent – points are moved singly to estimate the gradient direction for the
objective function, but moved all at once using a line search.

6 Model Evaluation Criteria
In order to compare different algorithms for non-rigid registration and model building, we need to have some quan-
titative measures of the properties of a given model. Following Davies et al. [4], we use two measures of model
performance:
Generalisability: the ability to represent unseen images which belong to the same class as images in the training set.
Specificity: the ability to only represent images similar to those seen in the training set.
Let {Ia(X0) : a = 1, . . . N} be some large set of images, generated by the groupwise model, and having a distribution
which is the model distribution. We then define the following quantitative measures:

Generalisability: G = 1
N

N∑
i=1

min
w.r.t a

(|ITi(X0)− Ia(X0)|) , Specificity: S = 1
N

N∑
a=1

min
w.r.t. i

(|ITi(X0)− Ia(X0)|)
where the distance|·| is a measure of the distance between two images, such as the Euclidean or shuffle distance.

7 Experiments: Evaluation of Pairwise & Groupwise Registration and Models
We have previously performed experiments to validate our MDL objective func-

Figure 3:Generalisation ability and
Specificity for the strategies listed –
dark bars groupwise, light bars pair-
wise.

tion and model evaluation criteria, see [13] for details. Here we investigate the
performance of several different non-rigid registration methods, including that
presented in this paper. Although all the methods we have described can be
used in 3D, it was impractical to run the very large set of experiments required
in the time available, thus we present results for 2D images of the brain. To
evaluate different methods of non-rigid registration we used a dataset consisting
of 104 2D MR slices of brains taken from normals; the initial 3D data set was
affinely-aligned, and then the corresponding slice extracted from each example.
In order to compare different registration strategies, for each technique we reg-
istered the entire set of 104 images and built the statistical models of shape and
appearance given by the found correspondence, using the nodes/knotpoints used
during the registration. We then computed the GeneralisabilityG and Specificity
S for each model (generating1000 model examples in each case, and using a
5-pixels square sample region for the shuffle distance), enabling a quantitative
comparison of the registration strategies from which each model was derived.
The strategies tested were:
1. Pairwise Registration:

A: Image from training set chosen as reference &16×16 regular grid of nodes:
(i) Residuals calculated in reference frame
(ii) Residuals calculated in training frame



B: As above, but removing points from the grid in regions of low texture variance.
C: Ditto, but moving points to nearby strong edges.

2. Groupwise Registration:
A: Registering to Intermediate Images estimated as the leave-one-out means (Alg. 1).
B: Registering to Intermediate Images estimated using the leave-one-out models.

Note that for1, we tried a selection of images from the training set as the reference, and choose that which gave the best
results in terms of the evaluation criteria. Strategy2B can be viewed as an approximation to the full algorithm given in
Alg. 2; in the same way that in the initialisation algorithm (Alg. 1) we estimate the Intermediate Images{IMi

} using
the leave-one-out mean, in this case we estimate them by finding the closest fit to the training imageITi

using the shape
model built from all the other examples and the current best estimate of their correspondence. We then optimise the
description length of the shape and texture discrepancies between this model estimate and the training image. Note that
we do not model the texture at this intermediate stage – this is because in the inner loops of Algs. 1&2, the warps{ωi}
at each spatial resolution are fully optimised, hence can then be modelled, whereas the texture discrepancy is merely
continually reduced. The results of this comparison are given in Fig. 3.

8 Discussion & Conclusions
We have presented a principled framework for groupwise non-rigid registration, based on the concept of minimum
description length. A groupwise model of shape and appearance is an integral part of the registration algorithm,
hence the registration also produces an optimal appearance model. We have given a brief description of a practical
implementation of the basic ideas. The key results are those summarised in Fig. 3. These show that our groupwise
approach achieves better Specificity than several different pairwise approaches. They also show the importance of
measuring errors in the correct frame of reference. Further work is required to implement more sophisticated versions
of our groupwise approach, and to provide a more comprehensive set of comparisions to alternative approaches. Our
initial results are, however, extremely encouraging.
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