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Abstract. We compare two methods for assessing the performance of groupwise non-rigid registration algorithms.
The first approach, which has been described previously, utilizes a measure of overlap between ground-truth anatom-
ical labels. The second, which is new, exploits the fact that, given a set of non-rigidly registered images, a generative
statistical model of appearance can be constructed. We observe that the quality of this model depends on the qual-
ity of the registration, and define measures of modelspecificityandgeneralisation– based on comparing synthetic
images sampled from the model, with those in the original image set – that can be used to assess model/registration
quality. We show that both approaches detect the loss of registration accuracy as the alignment of a set of correctly
registered MR images of the brain is progressively perturbed. We compare the sensitivities of the two approaches and
show that, as well as requiring no ground truth,specificityprovides the most sensitive measure of misregistration.
Finally, we usespecificityandgeneralisationto compare three NRR algorithms.

1 Introduction

Non-rigid registration (NRR) of both pairs and groups of images has been used increasingly in recent years, as a
basis for medical image analysis. Applications include structural analysis, atlas matching and change analysis [6]. The
problem is highly under-constrained and the plethora of different algorithms that have been proposed generally produce
different results for a given set of images [4,19].

Various methods have been proposed for assessing the results of NRR [9, 11, 13, 16]. Most of these require access to
some form of ground truth. One approach involves the construction of artificial test data, which limits application to
‘off-line’ evaluation. Other methods can be applied directly to real data, but require that anatomical ground truth be
provided, typically involving annotation by an expert. This makes validation expensive and prone to subjective error.

We present two methods for assessing the performance of non-rigid registration algorithms; one requires ground truth
to be provided, whereas the other does not. We compare the performance of the two approaches by systematically
varying the quality of registration of a set of MR images of the brain.

2 Method

The first of the proposed methods for assessing registration quality uses a generalisation of Tanimoto’s spatial overlap
measure [1]. We start with a manual mark-up of each image, providing an anatomical/tissue label for each voxel, and
measure the overlap of corresponding labels following registration. Each label is represented using a binary image, but
after warping and interpolation into a common reference frame, based on the results of NRR, we obtain a set of fuzzy
label images. These are combined in a generalised overlap score [5]:
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wherei indexes voxels in the registered images,l indexes the label andk indexes image pairs.Akli andBkli represent
voxel label values in a pair of registered images and are in the range [0, 1]. TheMIN() andMAX() operators are
standard results for the intersection and union of fuzzy sets. The generalised overlap measures the consistency with
which each set of labels partitions the image volume. The parameterβl affects the relative weighting of different labels.
With βl = 1, label contributions are implicitly volume weighted with respect to one another. We have also considered
the cases whereβl weights for the inverse label volume (which makes the relative weighting of different labels equal),
whereβl weights for the inverse label volume squared (which gives labels of smaller volume higher weighting) and
whereβl weights for a measure of label complexity (which we define arbitrarily as the mean absolute voxel intensity
gradient in the label).
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Figure 1. Training set and model in hyperspace

The second method assesses registration in terms of the quality of a generative statistical appearance model, constructed
from the registered images – for all the experiments reported here, this was an active appearance model (AAM) [3].
The idea is that a correct registration produces an anatomically meaningful dense correspondence between the images,
resulting in a better appearance model of the anatomy. We define model quality using two measures –generalisation
andspecificity. Both are measures of overlap between the distribution of original images and a distribution of images
sampled from the model, as illustrated in Figure 1. If we use the generative property of the model to synthesise a large
set of images,{Iα : α = 1, . . . m}, we can define GeneralisationG as:
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1
n
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α

|Ii − Iα|, (2)

where| · | is a measure of distance between images,Ii is the ith training image, andminα is the minimum overα
(the set ofsyntheticimages). That is, Generalisation is the average distance from each training image to its nearest
neighbour in the synthetic image set. A good model exhibits a low value ofG, indicating that the model can generate
images that cover the full range of appearances present in the original image set. Given a sufficiently large synthetic
set, even registered image with differing brightness levels will be paired with a nearby match. Similarly, we can define
SpecificityS as:
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i
|Ii − Iα|. (3)

That is, Specificity is the average distance of each synthetic image from its nearest neighbour in the original image set.
A good model exhibits a low value ofS, indicating that the model only generates synthetic images that are similar to
those in the original image set. The uncertainty in estimatingG andS can also be computed.

In our experiments we have defined| · | as the shuffle distance between two images, as illustrated for a single pixel
in Figure 2. Shuffle distance images are formed by taking the mean of the minimum absolute difference between
each pixel/voxel in one image, and the pixels/voxels in a shuffle neighbourhood of radiusr around the corresponding
pixel/voxel in a second image. Whenr ≤ 1, this is equivalent to the mean absolute difference between corresponding
pixels/voxels, but for larger values ofr the distance increases more smoothly as the misalignment of structures in the
two images increases. The effect on the pixel-by-pixel contribution to the shuffle distance image asr is increased is
illustrated in Figure 3.

3 Experimental Validation and Application

The overlap-based and model-based approaches were validated and compared, using a dataset consisting of 36 transax-
ial mid-brain slices, extracted at equivalent levels from a set of T1-weighted 3D MR scans of different subjects. Eight
manually annotated anatomical labels were used as the basis for the overlap method: L/R white matter, L/R grey mat-
ter, L/R lateral ventricle, and L/R caudate. The images were brought into alignment using an NRR algorithm based on
MDL optimisation [18]. The resulting appearance model is shown in Figure 6. A test set of different mis-registrations
was then created by applying smooth pseudo-random spatial warps to the registered images. These warps were based
on biharmonic Clamped Plate Splines. Each warp was controlled by 25 randomly placed knot-points, each displaced
in a random direction by a distance drawn from a Gaussian distribution whose mean controlled the average magnitude
of pixel displacement over the whole image. Ten different warp instantiations were generated for each image at each



Figure 2. The calculation of a shuffle difference image

Figure 3. Shuffle difference images between the images on the extreme left and right for
r = 1 (abs. diff.), 1.5, 2.1 & 3.7 from left to right.

of seven progressively increasing values of average pixel displacement. Registration quality was measured, for each
level of registration degradation, using several variants of each of the proposed assessment methods.

To illustrate practical application of the method, we use the brain images described above, and compare the results
of three different registration algorithms: a pairwise registration of each training set image to a fixed reference image
chosen from the training set, and two MDL groupwise methods, as described above, one with no explicit constraints
on the spatial deformations during the registration process (Groupwise 1) and a second which uses a statistical shape
model to constrain the allowed spatial deformations between the images during registration (Groupwise 2) [18].

4 Results

The results of the validation experiment are shown in Figure 4. Note thatO is expected to decrease with increasing
perturbation of the registration, whilstG andS are expected to increase. All three metrics are generally well-behaved
and show a monotonic response to increasing perturbation. This validates the model-based measures of registration
quality, which are shown both to change monotonically with increasing perturbation of the registration and to correlate
with the gold-standard approach based on manually annotated ground truth.

The results for different values ofr (shuffle radius) andβl all demonstrate monotonic behaviour with increasing pertur-
bation, but the slopes and errors vary systematically. This affects the size of perturbation that can be detected. To make
a quantitative comparison of the different methods, we define the sensitivity, as a function of perturbation( 1

σ )M−M0
d ,

whereM is the quality measured for a given degree of deformationd, M0 is the measured quality at registration (no
deformation) andσ is the mean error in the estimate ofM over the range.

Sensitivities of the different methods, averaged over the range of perturbations shown in Figure 4, are summarised in
Figure 5 for all the methods of assessment. Since sensitivity across the whole range is desired, this average shows that
the Specificity measure with shuffle radius 1.5 or 2.1 is the most sensitive of the measures studied, and that this ad-
vantage is statistically significant. Exceeding this shuffle radius may lead to performance degradation, as deformations
will be obscured by the shuffling.

Figure 4. From Left: Specificity (S), Generalisation (G) & Tanimoto overlap (O) as a function of misregistration.



Figure 5. The sensitivities of the different registration assessment methods and their standard errors.

Figure 6. Appearance model constructed from groupwise registered images. First mode of variation is shown,±2.5
standard deviations.

The results for different registration algorithms are shown in Figure 7. The specificity obtained for the two groupwise
methods is significantly better than that obtained using the pairwise approach, implying better registration, but it is not
possible to distinguish between the two groupwise methods. By applying the same NRR algorithms to an annotated
dataset, it becomes evident that generalised overlap measures agree with this assessment, for all possible assignments
to βl. As might be expected from the sensitivity results presented above, it is not possible to distinguish between any
of the methods using generalisation.

5 Conclusions

We have introduced a model-based approach to assessing the accuracy of non-rigid registration, without the need
for ground-truth. We have also described validation experiments where we progressively perturbed the initially good
registration of a set of images, and found a monotonic relationship between our model-based measures and the degree of
perturbation. We found that this behaviour was qualitatively identical to that obtained using a ’gold standard’ method
of assessment, based on the overlap of ground-truth anatomical labels associated with the images. A quantitative
comparison of the two approaches demonstrated that one of the model-based measures,specificity, provides a more
sensitive measure of misregistration than the overlap-based approach. This is not as surprising as it might seem at
first sight, since the model-based approach uses the full intensity information in the registered images, whereas the
overlap-based approach uses a more impoverished representation of image structure. We tested different variants of
the two approaches, and found that the model-based approach worked best when shuffle distance was used to measure

Figure 7. Generalisation and Specificity of the three registration methods as a function of the number of modes
included in the appearance model.



separation in image space, whilst the overlap-based approach worked best when a label complexity weighting was
applied. We also applied the model based approach to compare three different registration methods, and showed that a
groupwise registration approach gave better results than a pairwise approach.

These results are important, because they suggest that the performance of NRR algorithms can be compared objectively,
using just the registered images they produce, and that the quality of registration can be assessed in routine applications
of NRR, without the need for any additional information. It is important to note that our approach does not depend
on the specifics of the registration method used, or on the particular form of generative model constructed from the
registered data. It can be applied to the results of registration, whatever the NRR algorithm used, and different forms
of generative model could easily be substituted. We demonstrated this in recent experiments, which were omitted due
to the limited scope of this paper.
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