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Abstract

Landmark selection in appearance models proves to be a complex
problem that is presently solved in ways which are by no obvious crite-
rion optimal. Given a set of training data, diffeomorphic warps are used
to pose a simpler correspondence problem, thereby generating more
compact models of appearance. In recent work, statistical models of
intensity and shape are combined in a rather artificial way that ignores
the inherent correlation between the two. Furthermore, construction
of appearance models has not yet been made a fully automated pro-
cess. The need for manual annotation seems redundant given some
intriguing developments in model-based image analysis and exploita-
tions of these developments bears potential with respect to optimisation
and complete automation. This paper attempts to describe the existing
problems in some depth and outline some of the currently conceived
solutions.

1 Introduction
Shape and appearance models are often used to represent data (visually)
whose properties are roughly known in advance. These statistical models
are defined to be flexible enough to generalise to different types of legal
data examples, yet to preserve some invariants and constraints so that no
illegal examples are judged to be acceptable. The way in which such models
work is that they deform to fit a feature in a given image and the allowable
variance is dictated by some values that are incorporated into the model.
These values are derived from what is called a training set which defines
legal sets of values. This process is the analogue of “teaching” a system how
to make sensible decisions. Subsequently, some performance evaluation of
the trained system is required to infer its accuracy, for example an unbiased
error rate. Much more detail can be found in [1].
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The use of such models has been quite successful, but accuracy and
speed are still two hot topics. The search for good models continues as more
demanding applications of higher resolution and higher dimensionality be-
come available. Another problem worth solving is the automatic annotation
of images. Not only can it save valuable time of experts in a field, but it can
also help in the acquisition of a large number of reliable, precise, unbiased
and inexpensive annotated images. With more data handled without hu-
man intervention, more input is available to train classification systems
such as shape and appearance models.

Section 2 explains some of the key concepts that later on clarify how
active appearance models work. It also introduces some concepts that can
aid in solving the existing problems and deficiencies of active appearance
models as described in Section 3 onwards. More details are available in
the referenced material and only short explanatory notes are provided to
keep this document sufficiently broad in scope. The last section summarises
the issues and concludes on the measures to be taken to tackle them. No
substantial developments or ideas are proposed in this paper as it strives
to just provide a general overview and a roundup of the state of existing
ASM/AAM “technology”.

2 Background
Automatic landmark generation, or more broadly landmark selection, has
been an issue of great exploration in the past few years. As one of the
ultimate goals of image analysis tasks is complete automation and a pre-
cise deterministic approach to selection, older techniques such as manual
annotation of an image by experts is a task that ought to be emulated in
a reliable way by machine intelligence. Brute-force has been used to en-
able complex learning tasks for quite some time and investigation points
of interest en masse in an image, e.g. lines of high curvature, is certain to
lead to automatic annotation of some quality. The level of accuracy of such
process, however, which is strongly dependent on the algorithms used, still
appears to be a major hindrance. Methods of landmark selection and full
automation have been described in [2, 3] and more recently a good solution
have been discovered by Davies et al. [4, 5, 6] for landmark selection in
statistical shape models.

Problems associated with dimensionality have been pointed out in the
literature above. It is vital to ensure that methods work regardless of the
number of dimensions dealt with as one of the strengths of manual anno-
tation only becomes apparent when analysing 3-D data. This is primarily
due to the impossibility of annotating a large number of slices manually, as
in the case of medical imaging.

The rest of Section 2 attempts to objectively explain some of the more
fundamental concepts that build up towards the later developments and
proposal of new methods.
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2.1 Active Appearance Models
Deformable appearance models of shape and intensity are described in a
reasonable level of detail by Cootes et al. in [7] and in [8] although they
were first introduced by Edwards et al. in [9]. The basic idea was that
a measure of similarity between image intensities guided a progressive
search. Minimisation of the difference between a couple of images using the
sum of a pixel-wise comparison brought the statistical appearance model
and its target to convergence1. During this process, parameters were repet-
itively being re-evaluated so that they better described the target object –
that is the object in the image that resembled the model (see Figure 1).
Likewise, free-hand manipulation of these parameters allowed synthesis of
new realistic images2, meaning that a set of assignments for a collection of
parameters b1,b2, ..., bn would describe a legal (earthly from an anatomical
perspective) type of variation for the model. The following figure shows an
appearance model hovering over some target. The model is highlighted in
red and labelled ’M’.

Figure 1: Model and target

The following segment expresses in more detail the full process involved.
It comprises:

1. Appearance model construction.

2. Correlations learning in active appearance model.
1In the case of active shape models, on the contrary, inspection of nearby structures guided

the model so that it better matched the target. Since the model landmarks usually reflect on
the location of strong edges, similarity could be well-approximated by the distance between
model points and strongest edges in their vicinity. Search along normals to the lines join-
ing these landmarks led to appropriate edges location, provided that initialisation placed the
model close enough to the target.

2This reverse process is used, for example, in application where reconstruction of faces or
generation of flexible faces is of some value. Real-time animation is another possible extension
of this.
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3. Active appearance model search, based on resolved correlations.

The first and the second are concerned with training and learning whereas
the third makes use of these previous two. It is somehow possible to learn
from experience while searching, but it is not worthy of any further discus-
sion.

Appearance Model Construction

The parameters which statistically describe the shape (much as in active
shape models) can be expressed as a vector x, where

x = xmean + Psbs. (1)

xmean (or x) is the mean shape, as was calculated from the training data
using, for example, Procrustes analysis3. P represents the eigenvectors of
the covariance matrix (set of orthogonal modes of variation) and the pa-
rameters bs control the variation of the shape. For n modes of variation,
1 < s < n holds.

Similarly, a vector g is used to describe the intensity of given pixels as
derived from axis-aligned input data that is stretched to encompass the
whole shape and fit or overlap the original model dimensions. Usually
warps are used to displace the control points until they match those of the
mean shape and shape-normalised patches can be captured. Just as before,
variation is subjective to

g = gmean + Pgbg. (2)

For shape, training is affected especially by the choice of landmarks identi-
fied in the image, whereas to extract intensity values a different approach
is in use. This approach relies on the fact that geodesic interpolation can
be applied to compensate for the noncontinuous results of the triangulation
algorithm used. The linear form of the model as expressed above (1)(2) is
due to Principal Component Analysis (PCA) which reduces the length of the
vectors describing shape and texture, namely x and g respectively.

It is now imperative that the two equations above are merged in some
way to create a new model that captures both shape and intensity. To do
so, bsand bgare aggregated so they can be expressed as one single column
vector

3Procrustes analysis has proved to be a popular method of shape analysis. The generalized
Procrustes procedure was developed by Gower (1975) and has been adapted for shape analysis
by Goodall (1991).
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{
bs

bg

}
. (3)

Applying further PCA, the following model is obtained:

xi = x̄ + Qsci

gi = ḡ + Qgci
. (4)

It is purely controlled by c1, c2, ..., cn where n is intended to be smaller
than the number of bs and bg combined. That is simply due to the dimen-
sionality reduction of PCA. Usually an inclusion of some weighing W is
included to account for the difference in intensity value representation and
the spatial cooridinates. The aggregation in such a case would take the
form

{
Wbs

bg

}
. (5)

but this is a practical consideration that need not be a concern at this
point.

Learning Correlations in the Active Appearance Model

To improve the search performance, good choice of parameters adjustments
is required. It is desirable to learn some correlations off-line and use them
along with the model above to form a robust and efficient search. Observa-
tions are made to learn the correlation between the change in parameter
values (usually each mode independently considered) and the pixel inten-
sity difference that incurs. This means that for each change in the param-
eter values or for a collective change of several parameters, some change,
in certain parts of the image in particular, will be quite apparent. A matrix
of pixels (where rows represent horizontal scan lines in the image) is used
to record the difference that a re-parameterisation imposes. More mathe-
matically, for ci which are the parameters as described above, a change δc
is applied and the difference in intensities is calculated as follows:

δI = Imodel − Iimage. (6)

Usually sum-of-squares is used here to penalise more harshly for blunt
differences and ensure a summation of only positive values (∀x ⊂ Zx2 > 0).
Taking this intensity difference into consideration, the main correlation can
now be expressed as:

ci → ci + δc → δI (7)

which simply means that certain offsets to the parameters cicause a
certain change in intensity. This correlation is recorded as follows:
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δc = AδI (8)

where A is a matrix recording the change in intensities due to the repa-
rameterisation δc.

For each mode of variation and each pixel in the mean shape, weighting
(negative or positive) is assigned to guide what the search will attempt to
focus on. These “maps” of weights consume considerable amount of space,
but are the only known paradigm for speeding-up through off-line compu-
tation. Wavelet compression can be used to reduce the space requirements
and make active appearance models rather compact.

Active appearance model search Finally, using the model above
and the correlation recorded for that model, it is possible to carry out the
search as introduced in the beginning of this section.

The search is basically reliant on error or similarity measures calculated
after each attempted parameterisation. Each such reparameterisation is
initially guided by the matrices (images) that express correlating between
the modes of appearance change and the intensity values.

The model, as shown in Figure 1, is placed within the image frame,
close enough to its target. How close it should be put to the target is an
issue that will not to be explained in any real detail, but true convergence
may never be reached if bad initialisation takes place. The algorithm will
most possibly then terminate when it reaches a local minima.

The basic search algorithm, expressed in a simplified way, is as follows:

• Take appearance model in its current state and do:

– Compute δI, i.e. the difference between the model and the image.
– Re-adjust parameter values ci. Use the matrices learned off-line

to make good choices.
– Computer δI and save new appearance model if better results

are obtained. If not, adjustment according to a coefficient k =
1.5, 0.5, 0.25 might be worth assigning to δci in order to achieve
better results.

• While not converged or improvements are still being made.

The technique of matching an appearance model to an image is described
in greater detail with some examples in [10]. It is also worth mentioning
that in practice, in order to decrease the total run-time, varying increasing
image resolutions are selected in the search iterations. This technique is a
very common one in computer graphics and image interpretation tasks. A
pyramid can be used to describe the data available for choice. The figure
below shows how the size of the image quadruples (doubles in each of the
two axes) at each stage of the pyramid, where the base of this pyramid
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is level 0 (level numbers increase upwards). Finer resolution images are at
the bottom and low-resolution coarse ones at the top. The searching process
typically begins at the very top of the pyramid and declares convergence
only once it has reached the full resolution that is not lossy, i.e. it captures
the whole pre-existent data.

Figure 2: Resolution selection

Applications of Active Appearance Models

The strengths of active appearance models have often been demonstrated
using facial images. Faces are a challenging type of data to cope with due
to wide variation in gesture, inter-subject differences, facial hair, gender,
lighting conditions and age which are some of the more dominant factors.
It means that a good solution to face interpretation and recognition can lead
to progress in other aspects of analysis, e.g. industrial inspection, medical
data analysis, etc.

Commercial interest in this area has been another motive for increased
experimentation with faces. Access control and gesture recognition are
amongst the many possible uses of systems that investigate images (or se-
quences of images) of human appearance. The innate characteristics of the
large number of different faces to be considered makes this problem far
from trivial and it remains an excellent evaluation tool in the field of com-
puter vision and not only model-based image analysis. Another frequently-
used benchmarking data type is handwritten digits.

One common use of AAM’s is for medical image analysis. In order to
visualise shape and perform some measurements there needs to be a flexi-
ble model that handles anatomical variability and change, for example the
expansion of an organ after some period of time. Contrariwise, some objects
are not expected to show great variability, but abnormalities need to be de-
tected. Industrial inspection products are an example of systems domain
that follows such guidelines and they can often rely on edge detection and
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point-to-point measurements. These are simpler in the sense that they are
quicker in operation and they resemble mammalian vision. Human eye-
sight is said to be highly sensitive to edges (c/f Mach banding). Sonka et al.
[11] provide many more details on those topics.

2.2 Warps Representation
The potential of non-rigid registration of images has been a subject of re-
search due to its ability to simplify the correspondence problem, amongst
some other advantages it offers. As opposed to translation, scaling and
rotation, all of which are rigid transformations, affine and non-rigid trans-
formations [12] cater for flexible manipulation of points of interest. Fold-
ing and tearing has been the main drawback algebraic implementations of
these transformation, but recently an interesting group of warps has been
investigated. So-called diffeomorphic warps offer a solution to this draw-
back and they can easily be extended to 3-D in their regular form as shown
in the figure below. Nevertheless, for most practical uses, a large number of
such warps is needed, resulting in high computational demand. For further
discussion of the application of non-rigid registration to landmark selection,
see the work described in Hill et al.[13] and Rueckert et al. [14].

Figure 3 illustrates the effects current type of warps have on the space
used to embed images. These warps are reminiscent of the ones described
in Lötjönen and Mäkelä [15], but unlike many others, they have continuous
derivates at the borders, which is a crucial condition for diffeomorphism.

Figure 3: Warp example

When dealing with the aforementioned appearance models, an alterna-
tive emerges which chooses to deal with similarity measures using warps
that minimise the difference between two images. Current research work
attempts to apply the same principles to a large group of images and the
result is a parameterisation that is compact in a global context. It relies on
the many warps applied to the input data which bring their collective de-
scriptive parameters closer together. As the different images are embedded
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in the heavily warped space, the spatial differences amongst the images are
essentially being minimised.

2.3 Minimum Description Length
Overview

Minimum Description Length (MDL) can be used to drive the correspon-
dence selection process so that better models are gradually produced. It
is used to form an objective function that guides a minimisation aiming to
find a good similarity measure, i.e. minimum apparent difference amongst
a set, thereby choosing good correspondences. It is yet unclear how it can
be usefully applies for appearance models. Figure 5 which is shown later
illustrates the contribution of MDL to the overall process. It inputs data
that is jointly generated from the current model and some data set and it
outputs an estimate that adjusts impending warps and affects the choice of
numerous parameter values.

MDL was extensively used in [4] where for some given model, a message
is passed which gets assigned a value of length that implies complexity. The
message is encoded to encapsulate the relation between a data examples
and the up-to-date appearance model. Sometimes an evaluation data ex-
ample is based on the leave-one-out validation technique, meaning that a
large number of examples will generate a statistical model and one will be
used to evaluate the model4. If the model is too complex or not suitable to
represent the data, the message that is passed will be greater in length.

MDL in Action

The following chooses to focus on the incorporation of MDL in shape models.
The process aims to choose good landmarks along some curve without any
human intervention.

At the start, correspondences across a set of examples are places quite
arbitrarily. Usually, a path-length spread of the points is a sensible enough
choice which means landmarks are equally-spaced. This allows maximum
freedom of movements for all landmarks mutually. A model is then created
for the whole set and its parameters biwhich can solely characterise it are
used to evaluate its compactness. For good choice of correspondences across
the set we expect low values of bias well as ones with low variance, that is,
a small range of acceptable values. The correspondences are then shifted
along the contour of the shape iteratively in a process known as continuous
reparameterisation. It is not just mathematically continuous (as it is func-
tionally defined so that it fits any scale), but it also potentially affects all

4The model is constructed using only n− 1 examples where n is the total number of exam-
ples and is then evaluated in accordance with the single left-out example. This procedure is
usually performed n times, with a different example put aside at each iteration and averaging
is then used to estimate the relevancy of the model.
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landmarks along the curve in a ripple-like/cascading behaviour. The repa-
rameterisation is kept diffeomorphic so that no landmarks move beyond the
position of their successor (or more generally, one of their two neighbours),
a step that could result in tearing and/or folding5.

Experience has discovered that examples within the training sets should
be dealt with one at the time6, evaluating the whole set and the model at
each stage. Reparameterisation is usually defined by some transformation
rules that are vital to get good and fast results. The reparameterisation
is usually applied to a number of adjacent landmarks at a time and dif-
ferent scales are chosen at random as well as the location being affected.
At the later stages of the reparameterisation process, it is usually expected
that no real improvements will be made for large scale alternation attempts
and these will therefore be discarded fully in favour of small scale alterna-
tions that make the final fine adjustments. Experience has also shown that
ultimately good choice of landmark can be made automatic mainly due to
the ability of evaluating the model from information theoretic point-of-view,
namely MDL.

MDL is well described by Rissanen in [16, 17] and the world wide web
at: http://www.mdl-research.org/ .

2.4 Bags of Pixels
A recently published technique is said to be capable of finding good dense
correspondence. It is described by Jebara in [18]. Images are said to be
better represented as sets of vectors for this specific purpose, as opposed to
vectorisation where fixed ordering is imposed by concatenation of the vec-
tors. Pixels are represented by the common (X,Y, I) tuple and the ordering
of these tuples is arbitrary (they are said to analogically be placed in a
bag so an alternative notion would be sets of pixel). Ways exist in which
good configurations for ordering these pixels can be found. This implies
that vectorisation of the pixels is not the sole option for effective image
representation. As the process of pixel ordering takes place, dimension-
ality reduction is indirectly performed which transforms the image into a
volumetrically minimal subspace and this reduction outperforms principal
component analysis by orders of magnitude. This is one of the points that
make this idea so appealing, but it is still extremely slow7.

The figure below pictures the difference between common approach of
pixel ordering versus the alternative bag of pixels.

5For closed curves, convex in particular, such problems are minute yet not negligible. A
monotonically increasing reparameterisation function will ensure that points along the curve
will at no stage overlap or conflict with one another in some way. It also has the advantage
of allowing any number of landmarks to be considered, so resolution constrained could be
specified beforehand.

6There has been the temptation of optimising several examples from the set in a distributed
manner.

7The algorithms currently used for demonstration purposes take 3 days to run, but sub-
stantial speed-up is expected soon.
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Figure 4: Bag of Pixels

3 Active Appearance Models Optimisation
3.1 Previous work
Minimum description length has been used previously to optimise models of
shape and a similar approach can be used in part to improve the results of
AAM formation. However, no analogous consideration has been applied to
intensity values or textures; modes of shape variation and modes of bright-
ness variation prove to be quite distinct. The former has not been combined
in a particularly helpful way with the latter and an artificial mixture of the
two, which is explicitly controlled by a coefficient λ, has been the only im-
plementation attempted.

As was described earlier, in order to generate good models of shape, or
more specifically good identification of landmark, warps were applied so
that commonalities across the whole set of images get accentuated and a
new morphed grid holds all the data.

3.2 Current work
Some research and experimentation have been carried out with the in-
tention of achieving good appearance models using warps and group-wise8

optimisation techniques. Algorithms have been utilised which are able to
manipulate one item of visual data to match another using diffeomorphic
warps (round in 2-D or spherical in 3-D). Such process must encompass

8Another advancement in current research is the inclusion of the whole set of data rather
than just a one-to-one (pairwise) correlation between data and the current AAM. An investi-
gation of just a couple at a time leads to poorer results in later practical use. That are due to
the limited scope of the approach.
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a large set of data in order to reliably generate a good active appearance
model. Cross-validation is used to repetitively evaluate whether the model
is altered appreciably or not. If a given warp appears to have the opposite
effect, namely increase the difference between the model and the target or
even leave it unchanged, it should be then discarded and the search for
effective combination of warps virtually backtracks.

Some aspects of this current research are heavily based on the work
of Davies et al., but intensity attributes of the data are quite badly han-
dled, especially given the high-performance of other components in the
whole active appearance model. No existent evidence indicates that the
current solution is the best solution or even a good one; in fact, quite the
contrary holds. Better knowledge of the variation of intensity and its de-
pendency on shape needs to be acquired first. It is still unknown whether
any real correlation as such exists and, if so, which approach can capture
it faithfully. Current approaches base this correlation on experimental ev-
idence. In other words, textures are extracted from the training examples
and recorded as a vector which is also statistically reliant on shape.

Another issue that is to some extent open for discussion is the procedu-
ral approach of geometrically transforming an image or image space. The
methodology, precedence and ordering in which warps should be applied are
not obvious. There is some satisfactory evidence though that current work
surpasses its predecessors. Diffeomorphic warps and the issues related to
them remain beyond the remit of the upcoming research work, yet it is cru-
cial that their properties are fully realised. Since they affect both shape
and texture, they have an impact on later stages of AAM optimisation.

Figure 5 can finally be presented as many of its constituent parts have
been elaborated on. The images at the top of the figure are not all required
to fulfil some predefined conditions (for example, having a large rectangu-
lar region at the centre), but some similarity between them is essential if
valuable outcomes are sought. The warps applied to these images make
group-wise registration possible. Comparison of each image to the refer-
ence image is still a valid choice, but empirical evidence suggests that re-
sults will then be inferior.
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Figure 5: Active Appearance Models optimisation

3.3 Alternatives
From the graphical description above it can be somehow assumed that
pipelining is worth investigation so that each of the modules in the cycle
is kept busy. This of course would require an architecture that supports
parallelism and is therefore not quite usable in typical work environments.
Also, due to really heavy dependency in this cyclic system, many guesses
need to be made and effort is thus being going wasted.

Some specific points of weakness were often described in technical re-
ports in the field. There are many alternatives that were not taken into
consideration, often because they did not appear trivial or had not been
used before. It is often concluded that such alternatives are not construc-
tive, whereas more widespread algorithms show higher success rates. For
instance, no apparent attempt has been made to assign dynamically chang-
ing weights to the different components in the objective function and no
wide range of warps has been made available in the transformation “arse-
nal”.

4 Potential Development
There is no question about the possibility of improving previous results.
Nonetheless, what needs to be pursued are ways of using obvious evidential
methods to find models that are essentially optimal in some sense and are
independent of the data under consideration. Algorithm that are ad-hoc
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and work better under certain conditions are of little interest as they will
not generalise or offer any substantial progress in the long run.

Currently, the extensively used warps are not as flexible as one could
hope for. While the theoretic principles work adequately, they sometimes
prove impractical for use on contemporary machines. Better ways of apply-
ing such warps are being investigated so that fewer warps of lower com-
plexity end up bringing two data samples to convergence rather quickly.

Texture patches have not seen significant enhancements in some previ-
ous work and further exploration seems worthwhile. Some of the principles
from the work on ASM’s could possibly be incorporated to produce more in-
tegral and consistent appearance models. The new models should exhibit
good correlating between shape and intensity.

Some of the suggestions above are rather hard to convert into concrete
implementations. Any such developments could lead to a real breakthrough.
Experience and understanding of the research domain could suggest that
a process of gradual trial-and-error would be fruitful. The next section
presents some of the expected difficulties and Section 6 concludes and pre-
dicts the work plan that this document will entail.

5 Challenging Issues
Some of the more interesting issues are to do with feasibility. The mathe-
matics behind diffeomorphism is said to be “not fully understood” and its
application to computer vision is unprecedented9. Ensuring that any ex-
isting techniques and experiments remain valid in a space of high number
of dimensions is another area that is hard to reason about and usually in-
volves some trade-offs and simplifications. Several techniques that work
perfectly well in 2-D can be completely useless in 3-D.

What makes this work slightly less worrisome is the proposition of new
and better ways of achieving good models of appearance and low error rates,
as described in previous papers with similar aims. These proposed steps
are usually meaningless, however, if they cannot be backed-up by some
ground-truth or a mathematical proof. Fiddling about with parameters and
using a-prior knowledge of the problem is a logically good approach, but it
contributes very little towards genuine research and exceptional insights.

6 Discussion
6.1 Summary
We presented some of the main concepts that should be useful in under-
standing the existing problems and improving past results. Many of these

9Comment: I am making some risky guesses here (as I often did beforehand). Apologies
for any disturbing assumptions that I make to preserve good flow.



6 DISCUSSION 15

concepts already form the basis for analysis of related past work the ex-
periments carried out throughout this work. Some of the weaknesses of
previous work have been identified and advancements or alternatives have
been suggested. The suggestions listed are slightly ill-considered in the
sense that they have not been fully thought through and whether they will
work or not is a question that will be answered as the project moves ahead.
Real alternatives will be revealed once the work reaches its set milestones
and is considered successful. Many more challenging issues are sure to
come up and the work will most possibly have aims that cannot necessar-
ily be achieved. Any contradiction to this assumption will make this work
valuable.

6.2 Future Work
It is preferable to focus on one single aspect of optimisation, although sev-
eral aspects can indirectly come together and overlap one another. Once
this aspect or aspects are fully realised, they will occupy the whole work ef-
fort. If one path in the overall work fails or seems to have limited capacity
for improvement, then effort will be diverted elsewhere with the intention
of increasing research productivity. Every piece of results shown following
this work will also be adjoined by the observation that some aspects are not
worthy of further exploration. Consequently, good guidance on continuation
of this research should be available.

The main direction that this work will take is yet unknown and it is
therefore hard to say anything about feasibility considerations. The actual
work to be embarked on and the objectives and milestones that go with it
are due to be determined.

6.3 A Vision
From a system that has a collection of conjectured points of interest, a crude
combination of two aspects of data collection and warping that is based on
a vague emerging technique, we may soon be able to integrate some of the
existing algorithms to form a powerful descriptor of appearance that can
automatically learn about the mixture of elements in images and produce
models that can be confidently labelled optimal according to some criteria.
This system will be more efficient and more responsive, regardless of the
type of data being inspected and its results will make it the best choice off-
the-shelf.
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