Planned Experiments Evaluation of Non-rigid Registration and Models

R. S. Schestowitz Research Student Imaging Science and Biomedical Engineering Stopford Building University of Manchester United Kingdom

June 14th, 2005

Part 1: Validation of Evaluation

- Comparing Euclidean, shuffles
 - Dataset comprises 104 brains, which have been registered in a group-wise fashion in VXL
 - Perturb the data uniformly and create a collection of perturbed image sets (repeat 10 times for better statistics)
 - The perturbed sets need to have pixel displacements which increase linearly between each given set and its predecessors
 - Apply symmetric shuffle distance with radius of size 1-5 (Euclidean and shuffles)
 - 1000 synthetic images to be generated
 - Derive Generalisability and Specificity with errors for all shuffle radii
 - Derive sensitivity
 - Repeat 5 time for all sets of perturbed images and take the averages
- Use the face data similarly. The Surrey face database contains ~60 instances.

Part 2: Comparison with Overlap measure

- Use the data from IBIM again (need for labels)
 - Compare the results above with overlap
 - Bill has already produced results using different variants of his algorithm
 - Produce a series of graphs which show the correlation between model- and overlap-based evaluation
 - The plots can scale to show a variety of shuffle radii and different types of overlap measures

Part 3: Evaluating registration algorithms

- Pair-wise, group-wise, and others
 - Models built automatically for 104 brains are available already
 - Consider rebuilding these with (what is currently) the improved algorithms
 - Arbitrate the choice of modes so average evaluation for a range of "number of modes", e.g. 5-20
 - Use shuffle distance with radius \sim 2.5, as before. Base this choice on the experiments in Part 1 so that the choice is justifiable.
- Possibly involve ITK (Imperial College) registration algorithms
 - Needs intensive work on porting formats and writing code
 - Can register the 104 brains using MI, NMI, CR, etc.
 - Evaluate in a way that is consistent with the above evaluations
 - Perform comparisons and draw some conclusions