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Overview

 Motivation

* Assessment methods
— overlap-based
— model-based

* Experiments
— validation

— comparison of methods

— practical application

e Conclusions
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Motivation for Assessment
e Different methods for NRR

— representation of warp (including regularisation)
— similarity measure
— optimisation
— pair-wise vs group-wise
e Limitations of current methods of assessment
— artificial warps (algorithm testing, but not QA)

— overlap measures (need for ground truth)
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Overlap-based Assessment
_Original Warp
image
Image
labels
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Label overlap tests
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Model-Based Assessment

Combining the strengths of UMIST and
The Victoria University of Manchester
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Model-based Framework

* Registered image set I statistical appearance model

* Good registration [ good model
— generalises well to new examples
— specific to class of images
* Registration quality « Model quality
— problem transformed to defining model quality

— ground-truth-free assessment of NRR
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Building an Appearance Model
Training set
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Training and Synthetic Images
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Model Quality

® s @ Training
° e o @ Synthetic
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e © -

Given measure d

® ® ° of image distance

. Py — " 5T . _ .

Specificity = } d; /m Mean distance to nearest training image
j=

d can be Euclidean or shuffle distance between images
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Measuring Inter-image Distance

* Euclidean

— simple and cheap

— sensitive to small misalignments
e Shuffle distance

— neighbourhood-based pixel differences

— less sensitive to misalignment
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Shuffle Distance

Image 4 Image B Difference Image AS

A B AS. =Min A.—B..‘

i ij i J1 if

Combining the strengths of UMIST and
The Victoria University of Manchester



Yy
er

The Universit
of Manchest

MANCHESTER

1824

Varying Shuffle Radius

Image 4 r=-1 r=1.5 r=2.1 r=3.7 Image B

Combining the strengths of UMIST and
The Victoria University of Manchester



Yy
er

The Universit
of Manchest

MANCHESTER

1824

Validation Experiments

Combining the strengths of UMIST and
The Victoria University of Manchester
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Experimental Design

e MGH dataset (37 brains)

e Selected 2D slice

 [nitial ‘correct’ NRR

* Progressive perturbation of registration

— 10 random instantiations for each perturbation magnitude
e Comparison of the two different measures

— overlap
— model-based
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Brain Data

e Eight labels per image
— L/R white/grey matter
— L/R lateral ventricle
— L/R caudate nucleus

Image LH Labels RH Labels
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Perturbation Framework

* Alignment degraded by applying warps to data
e Clamped-plate splines (CPS) with 25 knot-points

 Random displacement (»,68) drawn from distribution
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CPS with 1 knot point Multiple knot points

Combining the strengths of UMIST and
The Victoria University of Manchester
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Examples of Perturbed Images

0 0.3961 1,2449

ENEERRENENN
/

-

[ T 11

3.1688  4.9293  7.2538

144

I 111

BEREENEEEEEEE

Example warp

Increasing mean pixel displacement

Combining the strengths of UMIST and
The Victoria University of Manchester
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Results — Generalised Overlap

e Overlap decreases monotonically with misregistration
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Combining the strengths of UMIST and
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Results — Model-Based

* Measures increase monotonically with misregistration

Degree of misregistration (mean pixel displacement)
-0.5 1] 0.5 1 1.5 z 2.8 3 3.5 4 4.5
T T T T T T T T T 1

\“\

[da}
T

z

k3]

h=

o

=%

n \
Shuffle radius
—1 (Euclidean)

10F —1.5

2.1
3.7




ty
er

The Universi
of Manchest

MANCHESTER

1824

Results — Comparison

e All three measures give similar results

— overlap-based assessment requires ground truth (labels)
— model-based approach does not need ground truth

e Compare sensitivity of methods

— ability to detect small changes in registration
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Results — Sensitivities
* Specificity most sensitive method

= ) = o}
(= (= = (=1 (=1
T T T T T

L

Volume weighted
Equally weighted

Inverse weighted

| Label complexity weighted
= Shufile distance radius 1
- Shuffle distance radius 1.5

I Shuffle distance radius 2.1

Anogoadg

F— | Shuffle distance radius 3.7
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Further Tests — Noise

A measure of robustness to noise is sought
e Validation experiments repeated with noise applied

— each image has up to 10% white noise added
— two instantiations of set perturbation are used

* Results indicate that the model-based method is robust
— changes in Generalisation and Specificity remain detectable

— curves remain monotonic
— noise can potentially exceed 10%
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Practical Application — NRR
Benchmark

Combining the strengths of UMIST and
The Victoria University of Manchester
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Practical Application

e 3 registration algorithm compared
— Pair-wise registration
— Group-wise registration
— Congealing
e 2 brain datasets used
— MGH dataset
— Dementia dataset
e 2 assessment methods
— Model-based (Specificity)
— Overlap-based
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Practical Application - Results

e Results are consistent

e Group-wise NRR outperforms pair-wise, which
outperforms congealing

(a) MGH Dataset 064 - ¢ (b) MGH Dataset {c) Dementia Dataset
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Extension to 3-D

 The method was implemented and tested in 3-D

e Shuffle neighbourhood to be considered can be a
— box;
— cube;
— plane-based comparison (slice-by-slice);
— or sphere

e Validation experiments too laborious to replicate

* |nstead, 4-5 NRR algorithms are compared

e Ongoing work using annotated IBIM data

* Results can be validated by measuring label overlap
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Conclusions

* Overlap and model-based approaches ‘equivalent’
e Qverlap provides ‘gold standard’

e Specificity is a good surrogate
— monotonically related
— robust to noise
— no need for ground truth

— only applies to groups (but any NRR method)



