A Generic Method for Evaluating Appearance Models and Assessing the Accuracy of NRR

Roy Schestowitz, Carole Twining, Tim Cootes, Vlad Petrovic, Chris Taylor and Bill Crum

Overview

- Motivation
- Assessment methods
 - overlap-based
 - model-based
- Experiments
 - validation
 - comparison of methods
 - practical application
- Conclusions

Motivation

- Competing approaches to NRR
 - representation of warp (including regularisation)
 - similarity measure
 - optimisation
 - pair-wise vs group-wise
- Different results for same images
- Need for objective method of comparison
- QA in real applications (how well has it worked?)

Existing Methods of Assessment

- Artificial warps
 - recovering known warps
 - may not be representative
 - algorithm testing but not QA

- Overlap measures
 - ground truth tissue labels
 - overlap after registration
 - subjective
 - too expensive for routine QA
- Need for new approach

Model-Based Assessment

Model-based Framework

- Registered image set ⇒ statistical appearance model
- Good registration ⇒ good model
 - generalises well to new examples
 - specific to class of images
- Registration quality
 ⇔ Model quality
 - problem transformed to defining model quality
 - ground-truth-free assessment of NRR

Building an Appearance Model

Training	Model
	Image Space

Synthetic

Image Space

Training

Image Space

Image Space

- Training
- Synthetic

- Training
- Synthetic

Model Quality

- Training
- Synthetic

Given measure *d* of image distance

Specificity =
$$\sum_{j=1}^{m} |d_j^{ST}| / m$$
 Mean distance to nearest training image

- d can be the Euclidean or shuffle distance between images
- Better models have smaller distances, d
- We plot {-Specificity}, which decreases with misregistration

Measuring Inter-Image Distance

- Euclidean
 - simple and cheap
 - sensitive to small misalignments
- Shuffle distance
 - neighbourhood-based pixel differences
 - less sensitive to misalignment

Shuffle Distance

Varying Shuffle Radius

Image A

r = 1

r = 1.5 r = 2.1 r = 3.7

Image B

Validation Experiments

Experimental Design

- MGH dataset (37 brains)
- Selected 2D slice
- Initial 'correct' NRR
- Progressive perturbation of registration
 - 10 random instantiations for each perturbation magnitude
- Comparison of the two different measures
 - overlap
 - model-based

Brain Data

- Eight labels per image
 - L/R white/grey matter
 - L/R lateral ventricle
 - L/R caudate nucleus

Perturbation Framework

- Alignment degraded by applying warps to data
- Clamped-plate splines (CPS) with 25 knot-points
- Random displacement (r, θ) drawn from distribution

CPS with 1 knot point

Multiple knot points

Examples of Perturbed Images

Increasing mean pixel displacement

Results – Generalised Overlap

Overlap decreases monotonically with misregistration

Results - Model-Based

Measures increase monotonically with misregistration

Results - Comparison

- All three measures give similar results
 - overlap-based assessment requires ground truth (labels)
 - model-based approach does not need ground truth
- Compare sensitivity of methods
 - ability to detect small changes in registration

Results – Sensitivities

High sensitivity = small deformations reliably detected

Specificity most sensitive method

Further Tests – Noise

- A measure of robustness to noise is sought
- Validation experiments repeated with noise applied
 - each image has up to 10% white noise added
 - two instantiations of set perturbation are used
- Results indicate that the model-based method is robust
 - changes in Generalisation and Specificity remain detectable
 - curves remain monotonic
 - noise can potentially exceed 10%

Practical Application

Practical Application

- 3 registration algorithms compared
 - Pair-wise registration
 - Group-wise registration
 - Congealing
- 2 brain datasets used
 - MGH dataset
 - Dementia dataset
- 2 assessment methods
 - Model-based (Specificity)
 - Overlap-based

Practical Application - Results

- Results are consistent
- Group-wise NRR outperforms pair-wise, which outperforms congealing

Extension to 3-D

- 3-D experiments
- Work in progress
 - validation experiments laborious to replicate
 - comparison of 4-5 NRR algorithms
- Fully-annotated IBIM data
- Results can be validated by measuring label overlap

Conclusions

- Overlap and model-based approaches 'equivalent'
- Overlap provides 'gold standard'
- Specificity is a good surrogate
 - monotonically related
 - robust to noise
 - no need for ground truth
 - only applies to groups (but any NRR method)