

Assessing the Accuracy of NRR with and without Ground Truth

Roy Schestowitz, Bill Crum, Vlad Petrovic, Carole Twining, Tim Cootes, Chris Taylor

Imperial College London

... including

Generalised Overlap Measures

William R. Crum, Oscar Camara, Daniel Rueckert,

Kanwal K. Bhatia, Mark Jenkinson, and Derek L.G. Hill

Overview

- Background and motivation
- Assessment methods
 - overlap-based
 - model-based
- Experiments
 - validation
 - comparison of methods
- Conclusions

Non-rigid Registration (NRR)

- Alignment of image sets
 - dense correspondence
 - alignment of anatomical structures
- Alignment established by
 - image warping
 - comparison with other image(s)
 - maximising similarity
- Competing NRR algorithms produce different results

Motivation for Assessment

- Different methods for NRR
 - representation of warp (including regularisation)
 - similarity measure
 - optimisation
 - pair-wise vs group-wise
- Limitations of current methods of assessment
 - ground-truth deformations
 - binary overlap measures

Two New Approaches

- Generalised overlap
 - multiple labels
 - label interpolation
 - multiple images
- Model-based
 - NRR ⇒ combined appearance model
 - good registration ⇒ good model

Generalised Overlap

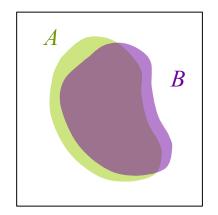
Overlap Measures

- Existing overlap measures
 - assume binary labels
 - evaluate one label at a time
 - cannot easily be applied to groupwise registration
- In practice
 - labels may be interpolated (pv) or fuzzy
 - there may be lots of labels
 - there may be lots of images
- Generalise existing overlap measures

Binary Overlap Measures

- Consider label regions A and B
- Tanimoto/Jacaard overlap

$$O_P = \frac{N(A - B)}{N(A - B)} = \frac{\text{Number of voxels in } A \text{ AND } B}{\text{Number of voxels in } A \text{ OR } B}$$



Dice overlap

$$O_Q = \frac{2N(A \ B)}{N(A) + N(B)} = \frac{\text{Number of voxels in } A \text{ AND } B}{\text{Mean number of voxels in } A \text{ and } B}$$

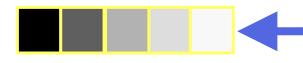
Alternate Form

Binary value at each voxel A_i and B_i

$$N(A = B)$$
 $MIN(A_i, B_i)$
 $N(A = B)$
 $MAX(A_i, B_i)$
 i

Interpolated Label Images

- Result of applying NRR
- Label values in range [0,1]



Fuzzy union and intersection

$$N(A = B)$$
 $MIN(A_i, B_i)$
 $N(A = B)$ $MAX(A_i, B_i)$

Generalised Overlap

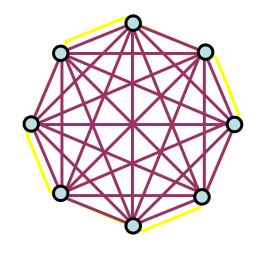
Fractional overlap

$$O_{F} = \frac{MIN(A_{i}, B_{i})}{MAX(A_{i}, B_{i})}$$
voxels,i

Accumulated over labels and image pairs

$$O_{PMF} = \frac{\alpha_{l} \quad MIN(A_{kli}, B_{kli})}{\alpha_{l} \quad voxels, i}$$

$$pairs, k \ labels, l \quad voxels, i$$



Label Weighting

Implicit volume weighting

$$\alpha = 1$$

Equal weighting

$$\alpha = \frac{1}{\alpha}$$

• Inverse volume weighting

• Labelle omplexity

$$\alpha = \frac{|\text{(Intensity)}|}{|$$

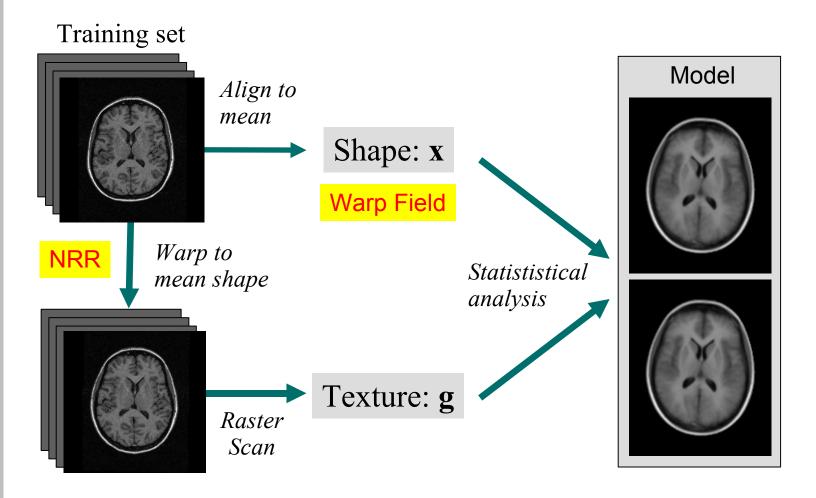
Model-Based Assessment

Model-based Framework

- Registered image set ⇒ statistical appearance model
- Good registration ⇒ good model
 - generalises well to new examples
 - specific to class of images
- Registration quality

 Model quality
 - problem transformed to defining model quality
 - ground-truth-free assessment of NRR

Building an Appearance Model

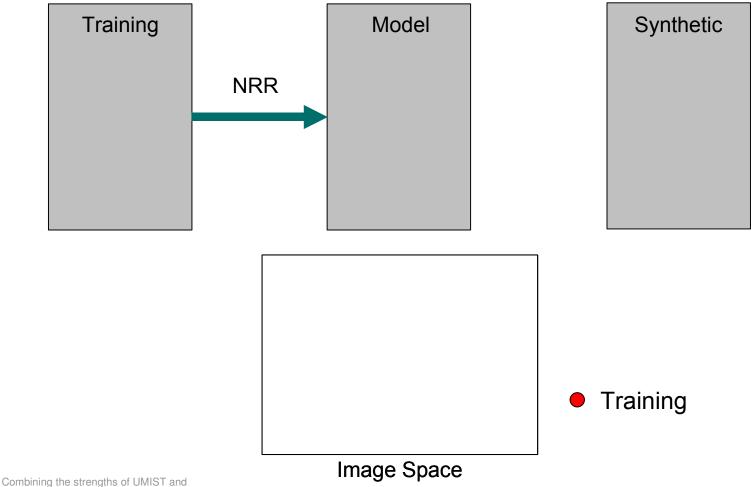


Combining the strengths of UMIST and The Victoria University of Manchester

Synthetic

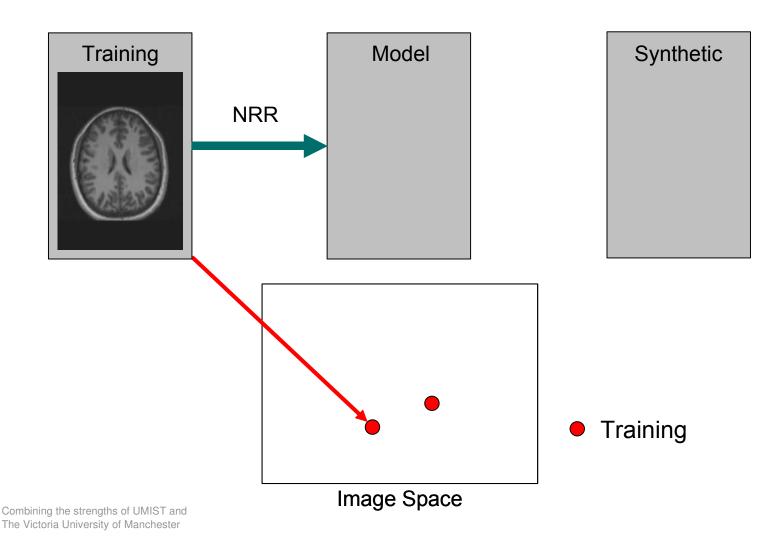
Training Model

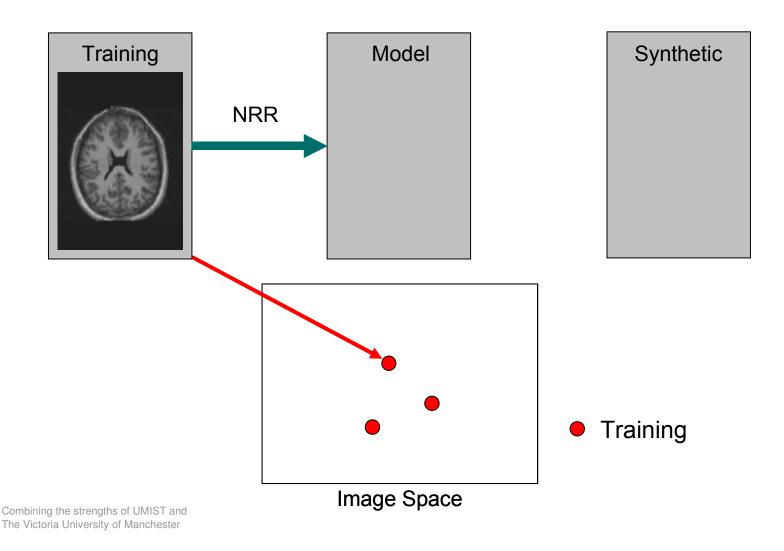
Image Space

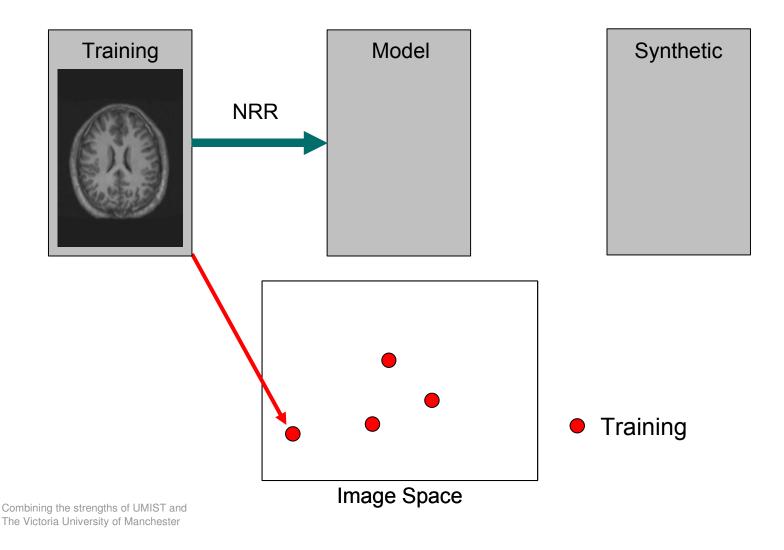


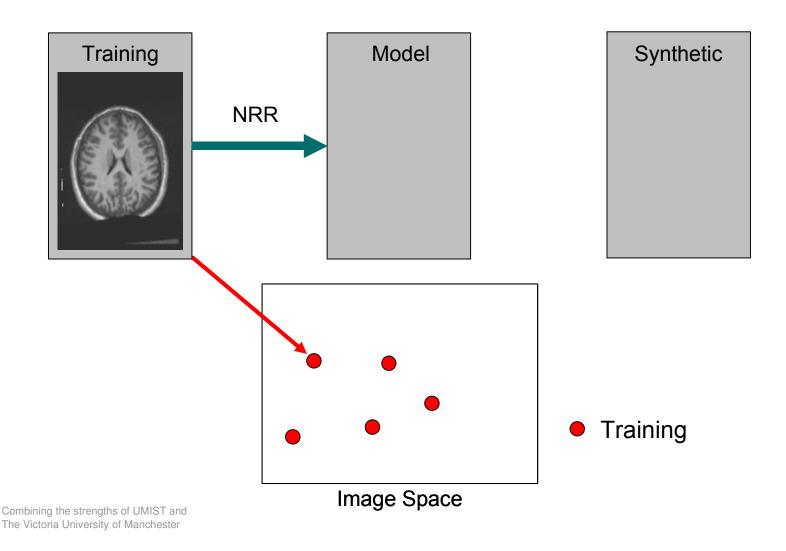
The Victoria University of Manchester

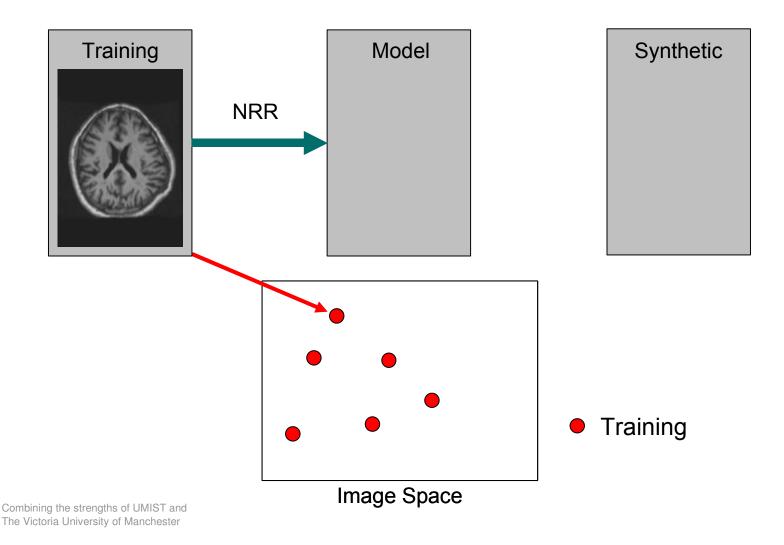




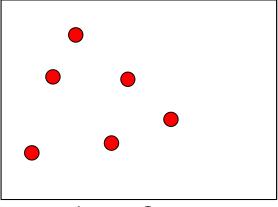




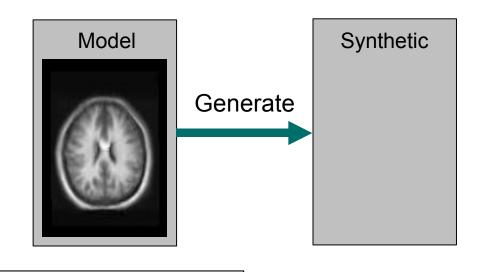


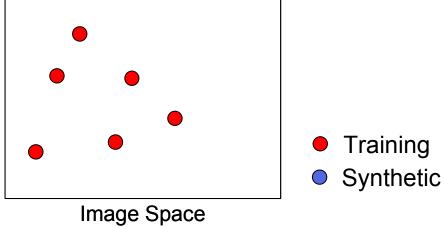


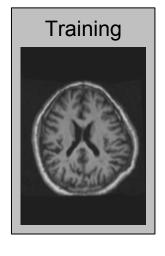


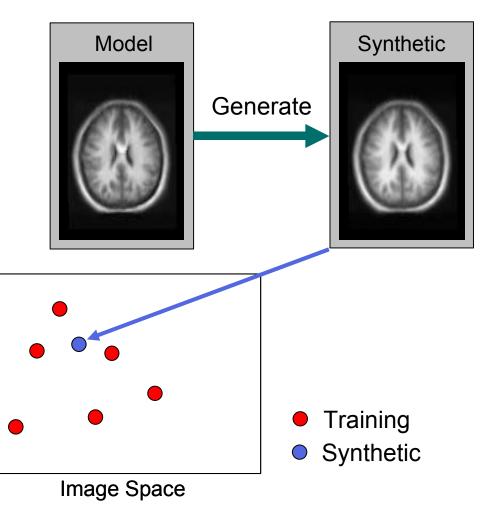


Training

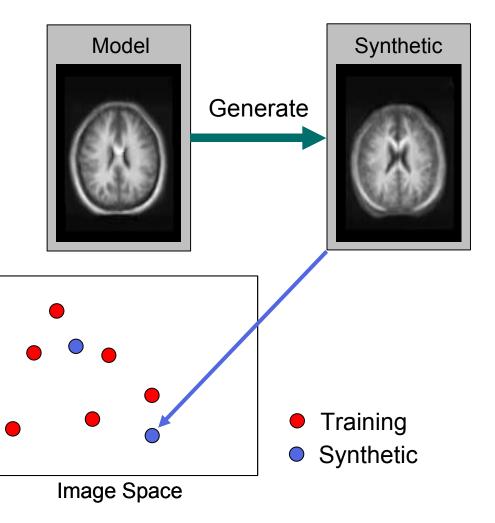


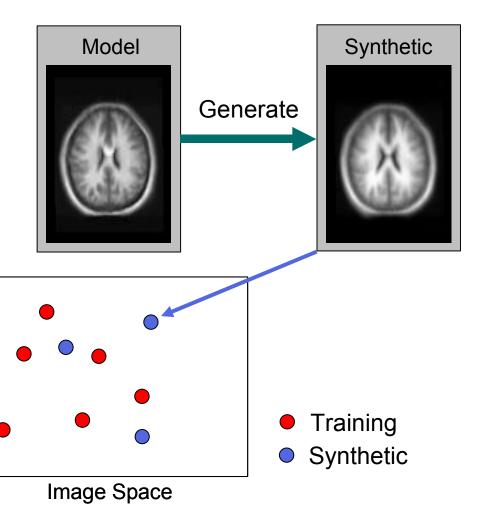


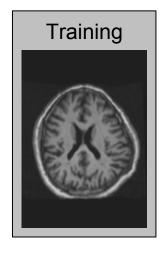


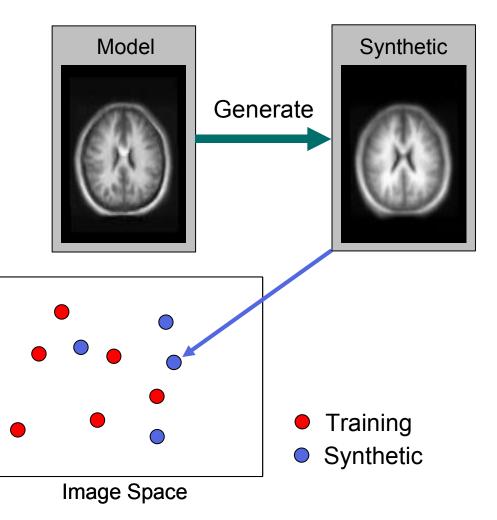


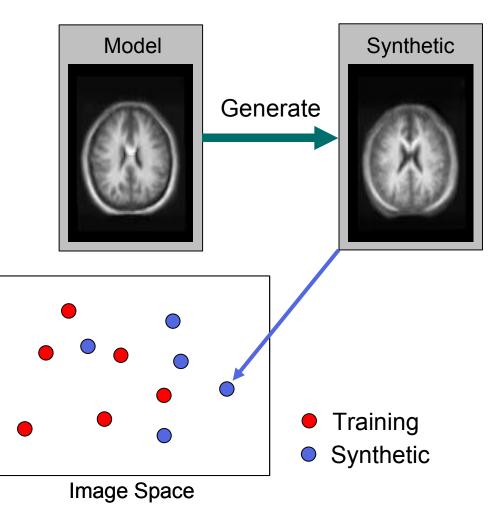
Combining the strengths of UMIST and The Victoria University of Manchester

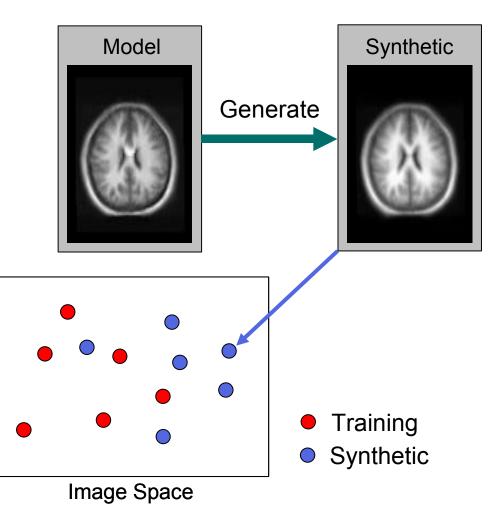












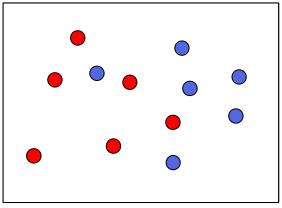


Image Space

- Training
- Synthetic

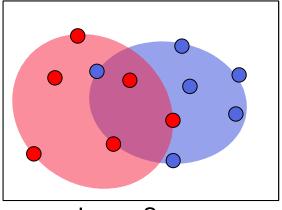
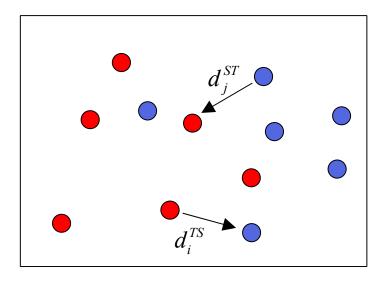


Image Space

- Training
- Synthetic

Model Quality



- Training
- Synthetic

Given measure *d* of image distance

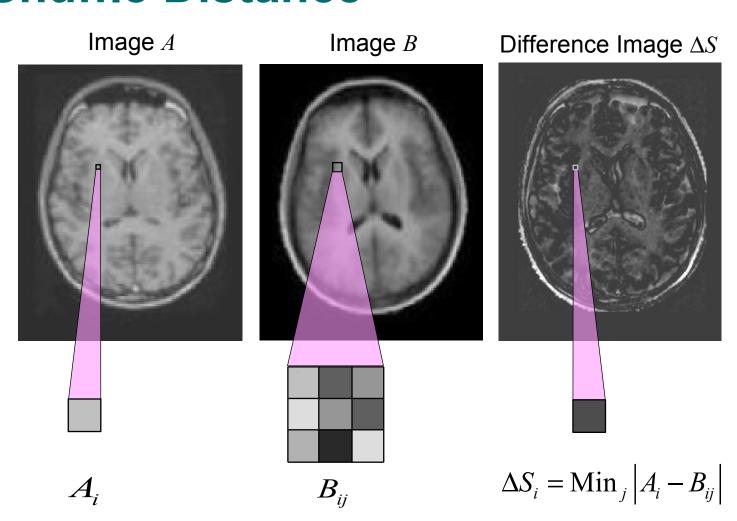
Specificity =
$$\int_{j=1}^{m} \left| d_{j}^{ST} \right| / m$$
 Mean distance to nearest training image

Generalisation = $\int_{j=1}^{n} \left| d_{j}^{TS} \right| / n$ Mean distance to nearest model image

Measuring Inter-Image Distance

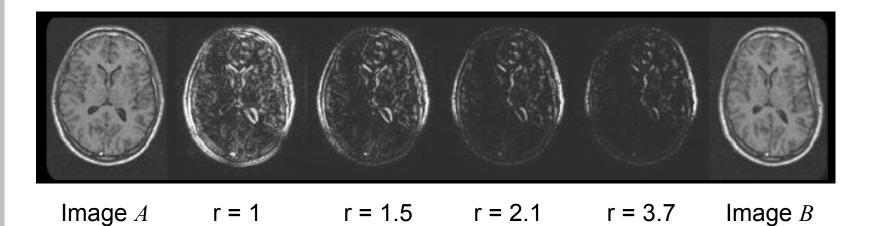
- Euclidean
 - simple and cheap
 - sensitive to small misalignments
- Shuffle distance
 - neighbourhood-based pixel differences
 - less sensitive to misalignment

Shuffle Distance



Combining the strengths of UMIST and The Victoria University of Manchester

Varying Shuffle Radius



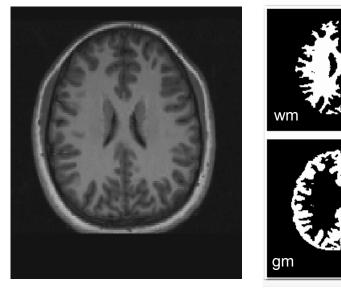
Experimental Evaluation

Experimental Design

- MGH dataset (37 brains)
- Selected 2D slice
- Initial 'correct' NRR
- Progressive perturbation of registration
 - 10 random instantiations for each perturbation magnitude
- Comparison of the two different measures
 - overlap
 - model-based

Brain Data

- Eight labels per image
 - L/R white/grey matter
 - L/R lateral ventricle
 - L/R caudate nucleus



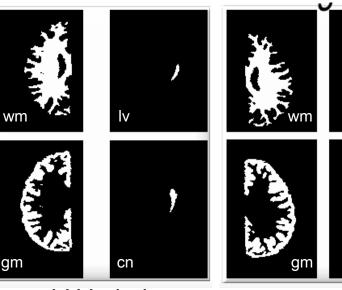


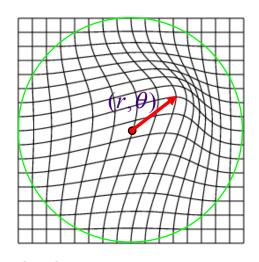
Image LH Labels

RH Labels

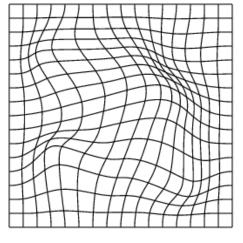
Combining the strengths of UMIST and The Victoria University of Manchester

Perturbation Framework

- Alignment degraded by applying warps to data
- Clamped-plate splines (CPS) with 25 knot-points
- Random displacement (r, θ) drawn from distribution

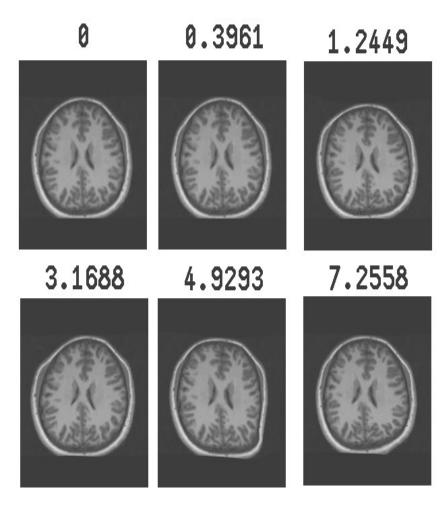


CPS with 1 knot point



Multiple knot points

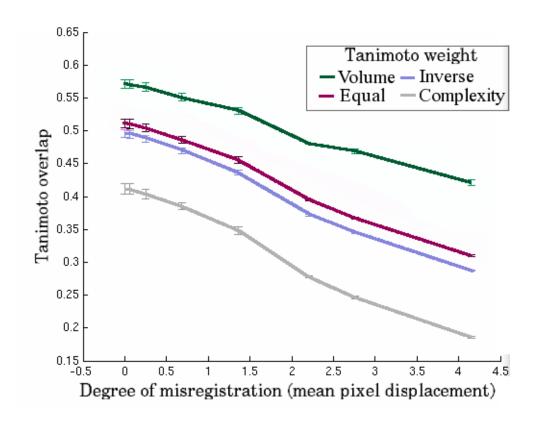
Examples of Perturbed Images



Combining the strengths of UMIST and The Victoria University of Manchester

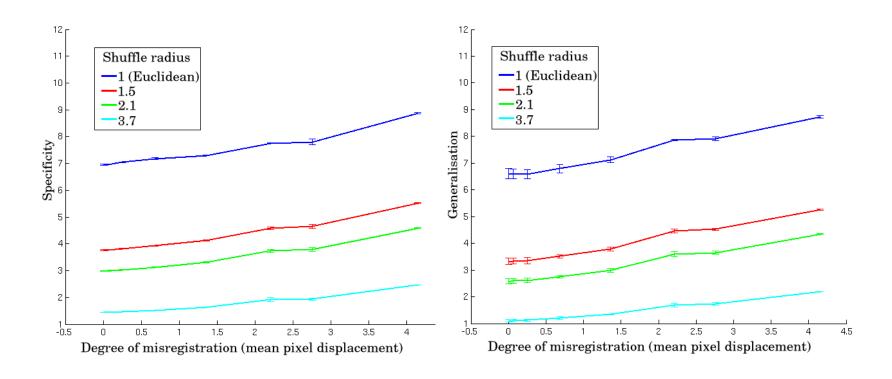
Results – Overlap

Overlap decreases monotonically with misregistration



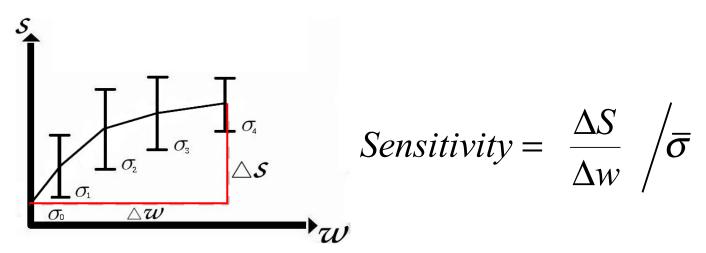
Results - Model-Based

Measures increase monotonically with misregistration



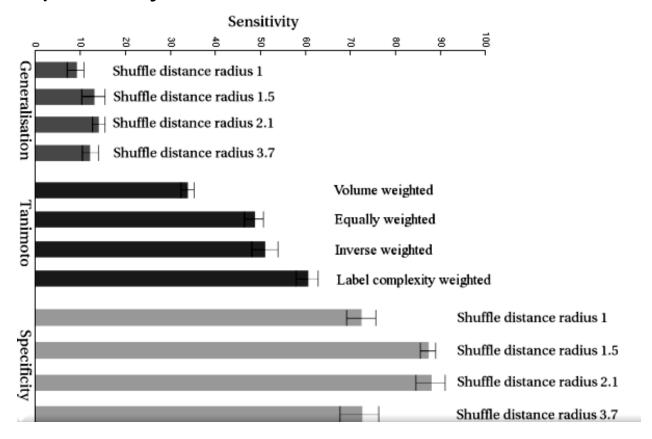
Results – Comparison

- All three measures give similar results
 - overlap-based assessment requires ground truth (labels)
 - model-based approach does not need ground truth
- Compare sensitivity of methods
 - ability to detect small changes in registration



Results – Sensitivities

Specificity most sensitive method



Further Tests – Noise

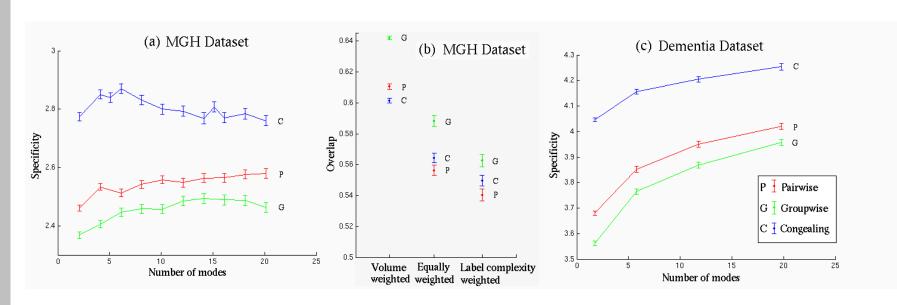
- Measure of robustness to noise is sought
- Previous experiments were repeated with noise applied
- Each image had up to 10% white noise added
- Changes in Generalisation and Sensitivity detectable
- Curves remain monotonic

Practical Application – NRR Benchmark

- 3 registration algorithm compared
 - Pairwise registration
 - Groupwise registration
 - Congealing
- 2 brain datasets used
 - MGH dataset
 - Dementia dataset
- 3 assessment methods
 - Model-based: Generalisation and Specificity
 - Overlap-based

Practical Application - Results

- Results are consistent
- Groupwise outperforms pairwise, which outperforms congealing



Extension to 3-D

- The method was implemented and tested in 3-D
- Shuffle neighbourhood to be considered can be a:
 - box
 - cube
 - plane-based comparison (slice-by-slice)
 - or sphere
- Validation experiments too laborious to replicate
- Instead, 4-5 NRR algorithms will be compared
- Ongoing work using annotated IBIM data
- Results to be compared against label overlap

Conclusions

- Both approaches sensitive to subtle misregistration
- Overlap and model-based approaches 'equivalent'
- Overlap provides 'gold standard'
- Specificity is a good surrogate
 - monotonically related
 - no need for ground truth
 - more sensitive
 - only applies to groups (but any NRR method)