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Overview

Background and motivation

* Assessment methods
— overlap-based
— model-based

* Experiments
— validation

— comparison of methods

e Conclusions
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Non-rigid Registration (NRR)

e Alignment of image sets

— dense correspondence

— alignment of anatomical structures
* Alignment established by

— image warping

— comparison with other image(s)

— maximising similarity

 Competing NRR algorithms produce different results
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Motivation for Assessment
e Different methods for NRR

— representation of warp (including regularisation)
— similarity measure
— optimisation
— pair-wise vs group-wise
e Limitations of current methods of assessment
— ground-truth deformations

— binary overlap measures
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Two New Approaches

* (Generalised overlap

— multiple labels
— label interpolation

— multiple images
 Model-based
— NRR O combined appearance model

— good registration LI good model
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Generalised Overlap
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Overlap Measures

e Existing overlap measures

— assume binary labels
— evaluate one label at a time

— cannot easily be applied to groupwise registration

e In practice

— labels may be interpolated (pv) or fuzzy
— there may be lots of labels

— there may be lots of images

* (Generalise existing overlap measures
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Binary Overlap Measures

e Consider label regions 4 and B

e Tanimoto/Jacaard overlap

O = N(A B) _ Number of voxels in 4 AND B
" N(4 B) Number of voxels in A OR B

e Dice overlap

_ 2N(A B) _ Number of voxels in 4 AND B
© N(A)+N (B) Mean number of voxels in 4 and B

Combining the strengths of UMIST and
The Victoria University of Manchester
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Alternate Form

« Binary value at each voxel 4.and B,

00000000000000000000
00000000000111110000
00000000011111100000
00000011111111000000 N(A= B) MIN(4;,B;)
00011111111110000000 i

00001111111111000000 N(A= B) MAX(A,B)
00000111111111100000
00000111111111000000
00000111111110000000
00000011111100000000
00000000000000000000

Region 4
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Interpolated Label Images
» Result of applying NRR

eStit 0T appying 00000000000000000000
e |Label values in range [O,’]] 00000000000%234240000

000000000%1111%00000
000000%421111%000000
Be @—-2008:111111%0000000

0000%11111111%000000
00000%11111111%00000
* Fuzzy union and intersection | 00000%1111111%000000
00000%4111111%0000000

000000%38844400000000
N(A= B) | MIN(A4,,B,) 00000000000000000000

l

N(4=B)  MAX(4,B)

l



ty
er

The Universi
of Manchest

MANCHESTER

1824
Generalised Overlap
* Fractional overlap
MIN(A,, B
- VOX@S,IMAX(Ai,Bi)

* Accumulated over labels and image pairs

a, MIN(4y;, By,)

— pairs,k labels,l voxels, i

O =
o a MAX (Akli ’ Bkli)

pairs,k labels, voxels, i

Combining the strengths of UMIST and
The Victoria University of Manchester
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Label Weighting

* Implicit volume weighting
a=1
e Equal weighting
1

a=—
* Inverse volume weighting

complexity

a= | (Intensity)|

label voxels
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Model-Based Assessment

Combining the strengths of UMIST and
The Victoria University of Manchester
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Model-based Framework

* Registered image set I statistical appearance model

* Good registration [ good model
— generalises well to new examples
— specific to class of images
* Registration quality « Model quality
— problem transformed to defining model quality

— ground-truth-free assessment of NRR
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Building an Appearance Model

Training set

Model

Align to
mean

——> Shape: x

Warp Field

Warp to
NRR meaiz? shape Statististical

analysis

Texture: g
Raster

Scan
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Training and Synthetic Images

@ Training

Image Space
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Training and Synthetic Images
Training Model Synthetic
NRR

@ Training

Image Space
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Training and Synthetic Images

Training Model Synthetic

NRR
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Training and Synthetic Images

Training Model Synthetic

Generate

@

® @ @® Training
@ Synthetic

Image Space



Yy
er

The Universit
of Manchest

MANCHESTER

1824

Training and Synthetic Images

Training Model Synthetic
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Training and Synthetic Images

Training Model Synthetic
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Model Quality

O @ Training
4’ @
/ @ Synthetic
o © ./ ® @
o @ :
Given measure d
O ‘}; ° of image distance
di

Specificity = ‘d J.ST ‘ / m Mean distance to nearest training image
j=1

n
. . _ T . .
Generalisation = d”|/n  Mean distance to nearest model image
l
1

1=
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Measuring Inter-image Distance

* Euclidean

— simple and cheap

— sensitive to small misalignments
e Shuffle distance

— neighbourhood-based pixel differences

— less sensitive to misalignment
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Shuffle Distance

Image 4 Image B Difference Image AS

A B AS. =Min A.—B..‘

i ij i J1 if

Combining the strengths of UMIST and
The Victoria University of Manchester
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Varying Shuffle Radius

Image 4 r=-1 r=1.5 r=2.1 r=3.7 Image B

Combining the strengths of UMIST and
The Victoria University of Manchester
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Experimental Evaluation

Combining the strengths of UMIST and
The Victoria University of Manchester
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Experimental Design

e MGH dataset (37 brains)

e Selected 2D slice

 [nitial ‘correct’ NRR

* Progressive perturbation of registration

— 10 random instantiations for each perturbation magnitude
e Comparison of the two different measures

— overlap
— model-based
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Brain Data

e Eight labels per image
— L/R white/grey matter
— L/R lateral ventricle
— L/R caudate nucleus

Image LH Labels RH Labels
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Perturbation Framework

* Alignment degraded by applying warps to data
e Clamped-plate splines (CPS) with 25 knot-points

 Random displacement (»,68) drawn from distribution

(NS ENNERRENENE

[ 11

anll

L

[ 1 4 1
| 111

%
AENNENEE AEERENEENNEN

CPS with 1 knot point Multiple knot points

Combining the strengths of UMIST and
The Victoria University of Manchester
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Examples of Perturbed Images
; 0.3961  1.2449

3.1688  4,9293 /.2558

Combining the strengths of UMIST and
The Victoria University of Manchester
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Results — Overlap

e Overlap decreases monotonically with misregistration

0.65

Tanimoto weight

— Volume — Inverse
0.55 — Equal — Complexity

0.6 F

Tanimoto overlap
] ]
- =
[a3] n = n n

T T

—
ra
cn

0er

|:|‘|5 1 1 1 1 1 1 1 1 1 1
‘s o 05 1 15 2z 25 3 a5 4 45
Degree of misregistration {(mean pixel displacement)
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Results — Model-Based

* Measures increase monotonically with misregistration

12 12
mE Shuffle radius " Shuffle radius
ok —1 (Euclidean) ol |1 (Euclidean)
—15 —15
ol 2.1 ol 2.1

oo

I

Specificity

o
T

Generalisation
[a3]
T

o
o
T

3 gL
4 7L

1 I I I I I I I I I 1 I 1 1 I I I 1 1 ]
-0.5 0 05 1 1.5 z 2.5 3 35 4 -0.5 0 0.5 1 1.5 4 2.5 3 35 4 45

Degree of misregistration (mean pixel displacement) Degree of misregistration (mean pixel displacement)
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Results — Comparison

* All three measures give similar results

— overlap-based assessment requires ground truth (labels)
— model-based approach does not need ground truth

* Compare sensitivity of methods

— ability to detect small changes in registration

. AS /_
Sensitivity = oo o
w
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Results — Sensitivities
* Specificity most sensitive method
Sensitivity
Q Shuffle distance radius 1
S
E Shuffle distance radius 1.5
ET Shuffle distance radius 2.1
E. | Shuffle distance radius 3.7
Volume weighted
-]
5. Equally weighted
% | Inverse weighted
(5
| Label complexity weighted
Shuffle distance radius 1
]
?_t; Shuffle distance radius 1.5
g: Shuffle distance radius 2.1

| Shuffle distance radius 3.7

Combining the strengths of UMIST and
The Victoria University of Manchester
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Further Tests — Noise

 Measure of robustness to noise is sought

* Previous experiments were repeated with noise applied
 Each image had up to 10% white noise added
 Changes in Generalisation and Sensitivity detectable

e Curves remain monotonic
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Practical Application — NRR

Benchmark
e 3 registration algorithm compared

— Pairwise registration
— Groupwise registration
— Congealing

e 2 brain datasets used
— MGH dataset
— Dementia dataset

e 3 assessment methods

— Model-based: Generalisation and Specificity
— Overlap-based
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Practical Application - Results

e Results are consistent

* Groupwise outperforms pairwise, which outperforms
congealing

a 064 [ G :
. (a) MGH Dataset (b) MGH Dataset . {c) Dementia Dataset
g2t ¢
_ 4zt
zat m T e Yl
g e ) P
056 r
g g g ¢
h=| 5 c h=! a9l
gg' a5l & o5t % ’ {e §_
w1 I {c “ asl o
P 1 Pairwise
054} Ir
G 3Tt G | Groupwise
24l oszl anl C { Congealing
0 5 n i 20 25 0g ' ' : : 35 : ! ! : )
Volume Equally Label complexity 0 2 e 1= & &

Number of modes weighted weighted weighted Number of modes
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Extension to 3-D

 The method was implemented and tested in 3-D
* Shuffle neighbourhood to be considered can be a:

— box

— cube

— plane-based comparison (slice-by-slice)
— or sphere

e Validation experiments too laborious to replicate
* Instead, 4-5 NRR algorithms will be compared

e Ongoing work using annotated IBIM data

* Results to be compared against label overlap
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Conclusions

* Both approaches sensitive to subtle misregistration
e Overlap and model-based approaches ‘equivalent’
e Qverlap provides ‘gold standard’
e Specificity is a good surrogate

— monotonically related

— no need for ground truth

— more sensitive

— only applies to groups (but any NRR method)



