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Motivation

• Competing approaches to NRR

– representation of warp (including regularisation)

– similarity measure

– optimisation

– pair-wise vs group-wise

• Different results for same images

• Need for objective method of comparison

• QA in real applications (how well has it worked?)



 

Existing Methods of Assessment

• Artificial warps

– recovering known warps

– may not be representative

– algorithm testing but not QA

• Overlap measures

– ground truth tissue labels

– overlap after registration

– subjective

– too expensive for routine QA

• Need for new approach
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Model-Based Assessment 



 

Model-based Framework

• Registered image set ⇒ statistical appearance model

• Good registration ⇒ good model

– generalises well to new examples

– specific to class of images

• Registration quality ⇔ Model quality

– problem transformed to defining model quality

– ground-truth-free assessment of NRR



 

Building an Appearance Model
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Training and Synthetic Images
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Model Quality
 

Training

Synthetic

Given measure d 
of image distance

ST
jd

• Euclidean or shuffle distance d between images

• Better models have smaller distances, d

• Plot [-Specificity], which decreases as model degrades



 

Measuring Inter-Image Distance

• Euclidean

– simple and cheap

– sensitive to small misalignments

• Shuffle distance

– neighbourhood-based pixel differences

– less sensitive to misalignment



 

Shuffle Distance
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Varying Shuffle Radius
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Validation Experiments



 

Experimental Design

• MGH dataset (37 brains)

• Selected 2D slice

• Initial ‘correct’ NRR

• Progressive perturbation of registration

– 10 random instantiations for each perturbation magnitude

• Comparison of the two different measures

– overlap

– model-based



 

Brain Data
• Eight labels per image

– L/R white/grey matter

– L/R lateral ventricle

– L/R caudate nucleus 

Image LH Labels RH Labels
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Perturbation Framework

• Alignment degraded by applying warps to data

• Clamped-plate splines (CPS) with 25 knot-points

• Random displacement (r,θ ) drawn from distribution

CPS with 1 knot point Multiple knot points

( , )r θ



 

CPS with 1 knot point     Example warp

Examples of Perturbed Images

Increasing mean pixel displacement



 

Results – Generalised Overlap 
• Overlap decreases monotonically with misregistration



 

Results – Model-Based

• [-Specificity] decreases monotonically with misregistration



 

Results – Comparison 
• All three measures give similar results

– overlap-based assessment requires ground truth (labels)

– model-based approach does not need ground truth

• Compare sensitivity of methods
– ability to detect small changes in registration                           

                



 

Results – Sensitivities
• Sensitivity

– ability to detect small changes in registration

– high sensitivity good

• Specificity more sensitive than overlap                         

                  



 

Further Tests – Noise
• A measure of robustness to noise is sought

• Validation experiments repeated with noise applied
– each image has up to 10% white noise added

– two instantiations of set perturbation are used

• Results indicate that the model-based method is robust
– changes in Generalisation and Specificity remain detectable

– curves remain monotonic

– noise can potentially exceed 10%
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Practical Application



 

Practical Application
• 3 registration algorithms compared

– Pair-wise registration

– Group-wise registration

– Congealing

• 2 brain datasets used
– MGH dataset

– Dementia dataset

• 2 assessment methods
– Model-based (Specificity)

– Overlap-based



 

Practical Application - Results
• Results are consistent

• Group-wise > pair-wise > congealing

MGH Data                            MGH Data                   Dementia Data



 

Extension to 3-D

• 3-D experiments

• Work in progress

– validation experiments laborious to replicate

– comparison of 4-5 NRR algorithms

• Fully-annotated IBIM data

• Results can be validated by measuring  label overlap 



 

Conclusions

• Overlap and model-based approaches ‘equivalent’

• Overlap provides ‘gold standard’

• Specificity is a good surrogate

– monotonically related

– robust to noise

– no need for ground truth

– only applies to groups (but any NRR method)


