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Data-Driven Evaluation of Non-Rigid Registration
via Appearance Modelling

Roy S. Schestowitz, Carole J. Twining, Vladimir S. Petrovic, dthy F. Cootes, William R. Crum,
and Christopher J. Taylor

Abstract— This paper presents a generic method for assessing And different algorithms tend to produce slightly diffeten
the quality of non-rigid registration (NRR) algorithms, that does results when applied to the same set of images [2] - there is
not depend on the existence of any ground truth, but depends 5 aeq for methods to assess the results of such regisgation

solely on the data itself. The data is taken to be a set of Vari thods h b df ina th
images. The output of any non-rigid registration of such a arious methods have been proposea tor assessing the re-

set of images is a dense correspondence across the whole segults of NRR [3]-[6]. One obvious approach is to compare the

Given such a dense correspondence, it is possible to build aresults of the registration to anatomical ground truth. eesy,

generative statistical model of appearance variation across & this suffers from the problem that such ground truth is often

set. Evaluating the quality of the registration algorithm is hence yificyit to obtain. For instance, expert annotation is time

mapped to the problem of evaluating the quality of the resultant . biecti d ’d'ff' It in 3D. Oth |

statistical model; that is, when the model is compared to the gonsumlng, su J(?C Ve, and very ai 'C,u In o er evalu

image data from which it was generated. It should be noted that tion approaches involve the construction of artificial wata,

this approach does not depend on the specifics of the registration which limits application to ‘off-line’ evaluation. Furtheore,

algorithm used or on the specifics of the modelling approach used. sych artificially generated and manipulated corresporelenc

We derive indices of model specificity and generalisation that 4oag not necessarily capture the type of deformation seen in

can be used to assess the quality of such models. This approaChreaI data. These problems motivate the search for a method of

is validated by comparing our assessment of registration quality o P .

with that derived from ground-truth anatomical labelling. We = €valuation that does not depend on the existence of ground-

demonstrate that not only is our approach capable of reliably truth data, or on making possibly unrealistic assumptiditgit

assessing NRR without ground truth, but it is a!so more sensitive the nature of the actual correspondence.

than the ground-truth-dependent approach. Finally, to demon-  1he method we will present here is based on the idea of

Stré‘t‘fhthe-pracucalgy of our method, d'ﬁeremdN-RT algomfhms- constructing statistical models of sets of images, modaishwv

— both pairwise and groupwise— are compared in terms of their '

perform%nce on MR %rainp data. P consider both the shape and texture variation of the objeets
aged (appearance models). Such models have been extgnsivel
used as the basis for image interpretation by synthesis. The

I. INTRODUCTION link between registration and modelling is given by the fact

ON-RIGID registration (NRR) of both pairs and groupéhat the output of registration is a dense corresponde_rrossac_

N of images has been used increasingly in recent yeatt'%‘? set of images. Such a set of correspondences is reqwred
as a basis for medical image analysis. Applications includ@ construct the shape and texture models [8], [9]. Varying
structural analysis, atlas matching and change analyjis '€ correspondence across a set varies the appearance mode
The problem is highly under-constrained and a plethora gilt upon this correspondence. The obvious corollary & th
different algorithms have been proposed. a better cqrrespondence ought to produce a better appearanc

The aim of non-rigid registration is to automatically find"0del. This allows use to map the problem of evaluation of
a meaningful, dense correspondence across a pair (heff@istration to that of evaluating the model generated ftioen
pairwise registration), or group (henagroupwisg of images. ©utput of the registration. . o
A typical algorithm consists of a representation of the de- The structure of this paper is as follows. We first give a
formation fields that encode the spatial variation betwedi€f description of the background to both the assessment o
images, an objective function that quantifies the degreeisf megistration, and of the construction of appearance moéats

registration, and a method of optimising the objective fime ~ €XPlain in more detail the link between the two. We present
guantitative measures which can be used to assess theyqualit
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Il. BACKGROUND prone to errors. They also rely on one’s ability to faithjull
extract anatomical structures from the image intensitiesea
This paper explores one such method, which assesses reg-
The aim of non-rigid registration is to find an anatomicallystration using the spatial overlap. The overlap is defined
meaningful, dense (i.e., pixel-to-pixel or voxel-to-vxeor- using Tanimoto’s formulation of corresponding regionshe t
respondence across a set of images. This correspondencedsstered images. The correspondence is defined by labels
typically encoded as a spatial deformation field betweeih eagf distinct image regions (in this case brain tissue clgsses
pair of images, so that when one image is deformed ongeoduced by manual mark-up of the original images (ground-
another, corresponding structures are brought into alemm truth labels). A correctly registered image set will exhibi
Such non-rigid registration of medical images is a difficuliigh relative overlap between corresponding brain strestin
problem, due to the size and complexity of cross-individugiifferent images and, in the opposite case — low overlap with
anatomical variation. non-corresponding structures. A generalised overlap meas
A typical registration algorithm proceeds by optimising7] is used to compute a single figure of merit for the overall
some objective function. The objective function depends osverlap of all labels over all subjects:
Lor example, Fhe degr.e(.e of deformation present in the si.patla S o Y MIN(Awi, Bui)
eformation fields defining the correspondence, and theémag pairsk labels:  voxels:
similarity that remains after the deformation has beeniadpl = , 4
Also to be defined are the representation used for the defor- pg%sma%& a VO%SZ, MAX (Ayiis Brai)
mation fields, and the method used for finding the optimum of
the objective function. Varying any of these factors prastuc
a different registration algorithm, which in general, tertd
produce a slightly different resulting correspondence.

A. Non-Rigid Registration

1)

wherei indexes voxels in the registered imagésndexes
the label andk indexes the two images under consideration.
Ay;; and By; represent voxel label values in a pair of
registered images and are in the raf@d]. The MIN() and
M AX () operators are standard results for the intersection and
B. Assessment of Non-Rigid Registration union of a fuzzy set. This generalised overlap measures the

We here describe several commonly-used approaches to {RBSIStency with which each set of labels partitions thegena

problem of assessing the results of registration. volume. , o _
Recovery of Deformation Fields: One obvious way to test '€ parametes, affects the relative weighting of different
the performance of a registration algorithm is to apply poels. V_V'th a =1, label contributions are |mpI|C|tIy vol-

to someartificial data where the actual correspondence [&M€ Weighted with respect to one another. This means that

known. Such test data is typically constructed by applyirﬁrge labels contribute more to the overall measure. We have

sets of known deformations (either spatial or textural)dwal | Eoﬂc(ojn&dt_—rred tTe casesh_V\;]hene \éve'g?]ts folr t_he mvc_arEe_
images. This artificially-deformed data is then registergue abelled region volume (which makes the relative weighting

process of evaluation is based on comparison between the g%gﬁferent labels equal), where; weights for the inverse

formation fields recovered by the registration and thosechi/a€! volume squared (which gives regions of smaller volume
have originally been applied [5], [6]. This type of approaeim higher w_elghtlng) a_nd where welght_s for a measure pf label

be used to test NRR methods 'off-line’. However, the Vayditcomplexny. We deflnellabel gomple>§|ty rgther arbnranlythe.

of this method presumes that we have the ability to constrdBgan absolute v_oxel intensity gradient in the Ia_beIIe(Eicneg|
artificial deformations which are sufficiently close to thpds More forr_nulatpns of overl_ap, other than Tanimoto’s, have
of deformation seen in real-world situations. Furthermor&'SO been investigated. Their results were shown to be less
there are situations where such artificial data sets are a pggc_urate and.they are om!tted in the interest of b.reV|ty.
representation of the actual variation between images. Ay ile our main focus remains assessment that requires no
example, images taken from different subjects may displ%ound truth, the approach above provides a good reference

a much more complicated and extensive variation that tHG compare against for validity with respect to groundftrut

which can be simulated by such simple deformations. annotation.

Overlap-based Assessment: The overlap-based approach

involves measuring the overlap of anatomical annotatiofs Statistical Models of Appearance

before and after registration. A good NRR algorithm will be There are many approaches to building statistical models

capable of aligning similar image intensities — in partioul of the appearance variation of objects which encompass the

those which indicate the location of anatomical structuregariation of both shape and texture that underlies suchappe

Alignment of image intensities leads to better overlap leetwv ance variation. In particular, we use the generative appear

anatomical structures, so the two are closely-correlated. models as introduced by Cootes et al. [8], [9]. They have
Similar approaches involve measurement of the mibeen applied extensively in medical image analysis [1@;[1

registration of anatomical regions of significance [3], [@hd among other related domains, and successfully appliechia br

the overlap between anatomically equivalent regions nbthi morphometry, and also to the time-series analysis of cardia

using segmentation. This process is either manual or semi#ta (e.g., [13]).

automatic [4], [5]. Although these methods cover a generalThe construction of such an appearance model from a

range of applications, they are labour-intensive and aenof set of images depends on the existence of a dense spatial
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obtain a combined statistical model of the more general form

x = x4+ Qsc
g = g+Q4cC 3

where the model parametatcontrol both shape and texture,
and Q,, Q, are matrices describing the general modes of
variation derived from the training set. The effect of varyi
one element ot for a model built from a set of 2D MR brain
image is shown in Fig. 1.

In many cases, we wish to distinguish between the mean-
ingful shape variation of the objects under consideratang
that apparent variation in shape that is due to the positgpaf
the object within the image (the pose of the imaged objegt). |
that case, the appearance model is generated from an (@ffinel
aligned set of images. Point positions,, in the original
image frame are then obtained by applying the relevant pose
transformationZz(-):

Xim = 1Tt (Xmodel) (4)

wherex,,.qe; are the points in the model frame, atidre the
pose parameters. For example, in 2Ip,could be a similarity
transform with four parameters describing the translation

rotation and scale of the object.
correspondence across the set. In many manual or semi:-

: - . In an analogous manner, we can also normalise the image

automatic methods of model building, this dense correspon-, . . . - .

. . set with respect to the mean image intensities and image
dence is extrapolated and interpolated from the correspure variance
of some set of anatomically or user-relevant landmark goint '
In the automatic method that will be used here, the dense gim = Tytrans(8model)s )
correspondence is given directly as the output of the NRRhere Tyirans CONsists of a shift and scaling of the image
algorithm. Hence the relevant landmark positions in thisecajntensities.
are in effect as dense as the pixels/voxels in the imagesFor further details as regards the exact implementation of
registered. appearance models, see [8], [9].

In either case, the shape variation is represented in term®s noted above, a meaningful dense groupwise correspon-
of the motions of these sets of landmark points. Using thignce is required before an appearance model can be built.
notation of Cootes [8], the shape (configuration of landmane way to obtain such a correspondence is by extrapolating
points) of a single example can be represented as a vedtom expert annotation. However, this annotation process i
x formed by concatenating the coordinates of the positiorgtremely time-consuming and subjective, particularly 30
of all the landmark points for that example. The texture igata.
represented by a vectgy, formed by concatenating the image The output of groupwise NRR is such a correspondence,
values for the shape-free texture sampled from the image. hence it was a natural next step to build automatic stadistic

In the simplest case, we model the variation of shape anbdels using the results of NRR algorithms [10], [11].
texture in terms of multivariate gaussian distributionsing This link between registration and modelling is further
Principal Component Analysis (PCA) [14]. We hence obtaiexploited in the Minimum Description Length (MDL) [15]

Fig. 1. The effect of varying the first (top row), second, ahatdt model
parameters of a brain appearance modetH®y5 standard deviations

linear statistical models of the form: algorithm for non-rigid registration, where modelling betes
an integral part of the registration process. This latterwwvaill
x = x+P,b, be one of the registration strategies used later in thismpape
g = g+Psb, @

I1l. EVALUATION METHOD

whereb, are shape parameteils, are texture parameters, |y the previous section, we described how the results of a
andg are the mean shape and texture, #hdand P, are the non-rigid registration algorithm can be used to build a gane
principal modes of shape and texture variation respegtivel tjve statistical model of image appearance. In this segtien
In generative mode, the input shage,X and b,) texture present our method for quantitatively assessing the guafit
parameters can be varied continuously, allowing the gé¢inera the model built from the registered data, hence for evalgati
of sets of images whose statistical distribution matchasdh the quality of the non-rigid registration algorithm from igh
the model we have constructed. this model was derived. We also investigate several of the
In many cases, the variations of shape and texture gressible choices for model evaluation, the aim being to find
correlated. If this correlation is taken into account, werth one which is both robust, and gives the greatest sensitivity
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Fig. 2. The model evaluation framework: A model is constructednfthe
training set and then images are generated from the model.raining set 1 M} is generated, having the same distribution as the

of images and the set generated by the model can be viewed aifs adu ; r .
points in image space. model pdfp(z). The estimate of the specificity (6) is:

M
1 . A

S\(Z:p) ~ — § I — L), 7

A. Specificity and Generalisation AZip) M M:Imz'm“ ul) 0

A good model of some training set of data should POSSESSY standard error:
several properties. Firstly, the model should be able teceff '

tively extrapolate and interpolate from the training déta, SD {mjn{\[i - IH\*}}
produce a range of images from the same general class as og = =& . , (8)
those seen in the training set. We will call tlggeneralisation M—1

ability. Conversely, the model should not produce imageghereSD is the standard deviation of the set of measurements
which cannot be considered as valid examples of the clggs the set of values ofi.
of object imaged. That is, a model built from brain images The measure of generalisation is then defined in an analo-
should only generate images which could be considered @sys manner:
valid images of possible brains. We will call this thgecificity "
of the model. 1 . A

In previous work, quantitative measures syecificityand GA(T:p) = N Zmﬁn(m =L ©)
generalisationwere used to evaluate shape models [16]. We =1
here present an extension of these quantitative measures. With standard error:

Consider first the training data for our model, that is, thte se ) N
of images which were the input to our NRR algorithm. Without SP H}}H{Hi — L[}
loss of generality, each training image can be considered as oG = N1 : (10)

a single point in image space (see Figure 2). A statistical .

model is then a probability density functigriz) defined on That is, for each member of the training sef we compute
this space. To be specific, I¢t; : i = 1,... N} denote the the distance to the nearest-neighbour in the .sarr_lplq.@e}t_

N images of the training set when considered as points lgrge values of; correspond to model distributions which
image space. Leb(z) be the probability density function 0fdo. not cover the training set qnd_ have poor ge_neral|sat|on
the model. ability, whereas small values @ indicate models with better

We then define our basic quantitative measure ofsgneci- 9eneralisation ability.
ficity S of the model with respect to the training set= {I;} We note here that both measures can be further extended,

as follows: by considering the sum of distances to k-nearest-neigispour
\ rather than just to the single nearest-neighbour. Howewer,
S\(Z;p) = /P(Z)Vrvnri{l, (lz = L))" dz, (6) what follows, we restrict ourselves to just the single nsare

. . . i _neighbour case.
where|-| is a distance on image space, raised to some positive

power \. That is, for each point on image space, we find ) )

the nearest-neighbour to this point in the training set,sud B+ Distances in Image Space

the powers of the nearest-neighbour distances, weightéieby The most straightforward way to measure the distance

pdf p(z). Greater specificity is indicated gmallervalues of between images is to treat each image as a vector formed by

S, and lesser byarger. In Figure 3, we give diagrammatic concatenating the pixel/voxel intensity values, then ttie

examples of cases with varying specificity. Euclidean distance. It means that each pixel/voxel in one im
The integral in equation 6 is approximated using a Montage is compared against its spatially corresponding piooei

Carlo method. A large random set of imagég, : p = in another image. Although this has the merit of simplicity,
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Gray White Lateral Caudate
Matter Matter Ventricle Nucleus

Fig. 7. An example affinely-aligned brain image and its accoryinan
anatomical labels, both overlaid and expanded, for gray mattdgte matter,
the lateral ventricles, and the caudate nucleus. Labelsalaedivided into
left and right.

IV. VALIDATION OF THE APPROACH

In this section, we present experiments which investigate
the behaviour of our evaluation method. The principal idea
is that of producing perturbed datasets, with progresse~ d
grees of degradation. Ideally, our specificity and gensatitn
measures should vary monotonically with the degree of degra
dation.

The sensitivity of our method, that is, the degree of change
that it can reliably detect, is an important issue, which is
further explored in Section V-A.

Fig. 5. Examples of the shuffle difference image: from one imagegecond A. Brain Dataset with Ground Truth

image (left), from the second image to the first (centre), aedsghmmetrical .. . . .
Shu?ﬂe(dist)ance image (right) g ( ) ym Our initial dataset consisted of” = 36 transaxial mid-

brain 2D slices, extracted at equivalent levels from a set of

T1l-weighted 3D MR scans of normal subjects. The ground-
does not provide a very well-behaved distance measure siii¢gh data for this set consisted of dense (pixel by pixetpby
it increases rapidly for quite small image misalignmentg][1 tissue labels, the tissue classes being gray and whitemthtte
This observation led us to consider an alternative distane@udate nucleus, and CSF within the lateral ventricless&he
measure, based on the 'shuffle difference’, inspired by thebels were further divided into left and right. An example
'shuffle transform’ [18]. If we have two images; (z) and image and it's labelling is shown in Figure 7. The training
Iy(z), then the shuffle distance between them is defined aset was non-rigidly registered using the Minimum Descoipti

Length (MDL) algorithm [15]. This registration was used as

Dy(I, 1) = ni UeH]%fiI% )Ih(x) — I (y)|  (11) the starting point for the evaluation.
P, ! r{&

where there are,, pixels (or voxels) indexed by, andN,.(z) B- Perturbing Ground Truth
is the set of pixels in a neighbourhood of radiuaroundz. The evaluation now proceeded by considering perturbations
The idea is illustrated in Figure 4. Instead of taking thabout this found registration.
sum-of-squared-differences between corresponding pided A test set of different registrations was created by applyin
minimum absolute difference between each pixel in one imagmooth pseudo-random spatial warps (based on biharmonic
and the values in a neighbourhood around the correspond@igmped Plate Splines [19]) to each image in the registered
pixel is used. This is less sensitive to small misalignmeanrtsl  set. Each warp was controlled by 25 randomly placed knot-
provides a better-behaved distance measure. The tolefancepoints, each displaced in a random direction by a distance
misalignment is dependent on the size of the neighbourhodhwn from a Gaussian distribution whose mean controlled
(r), as is illustrated in Figure 6. It should be noted that thihe average magnitude of pixel displacement over the whole
shuffle distance as defined above depends on the directiormge. Example images from the test set are shown in Fig-
in which it is measured (see Figure 5), hence is not a truee 8.
distance. It is trivial to construct a symmetric shuffle diste, Overall, the above approach was applied 10 times using 10
by averaging the distance calculated both ways betweerdifierent random seeds. The 10 different warp instantietio
pair of images. However, it was found that the improvememtere generated for each image and for each of seven progres-
obtained using this was not significant, and did not justifgively increasing values of average pixel displacement.
the increased computation time. In what follows, we use theThe perturbed correspondence across the set is then that
asymmetric shuffle distance. given by applying the originally-found correspondencenfro
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Fig. 6. A comparison between shuffle distance using varyirg seighbourhoods (radiug. Left: original image right: warped imagecgentre, from the

left: shuffle distance with- = 1(Euclidean),1.5,2.9 and 3.7 pixels.

0.0635 0.3961

8.3961

3.8406

Fig. 8. Examples of registration degradation for increasicgles of smooth
CPS warps. Mean pixel displacement for each image is shown.

the initial registration, but now applied to tlieformedmage

0.85 -

sl Tanimoto weight
=Volume — Inverse
0.55 — Equal Complexity
n 05F
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& 045
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o
E o35
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@
= ooaf
0.25
0zt
015 1 1 1 1 1 1 1 1 1 1
‘o5 o o5 1 15 2 25 3 35 4 45
Degree of misregistration {mean pixel displacement)
Fig. 10. Overlap measures (with corresponding errorbars)tie brain

dataset as a function of the degree of degradation of thestration cor-
respondence. The various graphs correspond to the van@iap measures
as defined in section II-B.

As can be seen from the Figure, all overlap measures de-
cay monotonically as a function of misregistration, shayvin
that our perturbed dataset does indeed have the systematic
behaviour we require.

Results for the measures of specificity(7) and generalisa-
tion G (9) as a function of the magnitude of the displacement
are shown in Figures 9(a) & 9(b). Note that the values for

sets. Hence the correspondence becomes progressivelg wéigneralisation and Specificity are in error form, i.e. they

as the degree of image deformation increases.

C. Validation Results

increase with decreasing performance. The various graphs
are for differing choices of the distance on image space,
encompassing Euclidean distance, as well as shuffle destanc
for varying values of the shuffle neighbourhood radius

Registration quality was measured, for each level of reg- |t should be noted that both measures show a monotonic

istration degradation (perturbation), using severalaras of
each of the proposed assessment methods:

decrease in performance with respect to the size of the-regis
tration degradation, for all choices of image distancec&ihe

« Tanimoto overlap for the ground-truth data labels (1) foroverlap measure also shows such a monotonic decrease, this

varying values of the label weighting;.
« Specificity & Generalisation ((7) & (9), A = 1), for

validates the model-based metrics inasmuch as they then als
vary monotonically with respect to the ground truth measure

varying definitions of image distance (Euclidean and what remains to be investigated are the effects of varying
shuffle distances), and for varying values of the shuffige various parameters in the definitions of the model-based

neighbourhood radius.

measures. For the shuffle distance, the parameter is thk-neig

In Figure 10 are the results from the Tanimoto overlagourhood radiug, the effect of which is studied in the next
based measure (1), which computes a measure that is bassrtion. We also investigate the various forms of the Tatomo
on ground truth, that is, the overlap of the annotated labets/erlap.
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Fig. 9. Generalisation & Specificity (with correspondingoerbars) for the brain dataset as a function of the degreeegfadiation of the registration
correspondence, and for varying definitions of image digati@t is, varying radius of the shuffle neighbourhood.

Sensitivity

We note here that various other overlap measuresasp . . . . . . =
sible. For instance, we also considered the Dice overlap, lopme
it was found to be inferior to the Tanimoto, and so is nc
considered further.

U3
+ne

13
-oot

Shuffle distance radius 1

Shuffle distance radius 1.5

3

| Shuffle distance radius 2.1

uonesi|y

| Shuffle distance radius 3.7

D. Measuring Sensitivity

As well as showing monotonicity, a good measure ¢
registration quality should also sensitive. That is, it @Wbo
enable us to measure small deviations from the optimum.
we can evaluate the sensitivity of a measure we will be ak
to fully compare the merits of various options. :

The size of perturbation than can be detected in the valicz
tion experiments will depend both on the slope of the graphs™
measure against degree of deformation, and also on the error
on the measure. To quantify this, we define the sensitivity b#©- 11. Sensitivity of different NRR assessment methods
a measure as follows.

Supposen(d) is the value of the measure for some degree
of deformationd. We then define the measure sensitivity as: V. ASSESSING ANDCOMPARING REGISTRATION

Dl d) 1 (m(d) B m(0)> ALGORITHMS
’ o d ’ Having shown the validity of the model-based measures
whereg is the mean error in the estimatesafover the range. Of registration quality, we now proceed to the reason for
D(m;d) is the change id required form(d) to change by one defining these measures, that is, to enable comparison of the
noise standard deviation, which indicates the limit of gjem performance of various non-rigid registration algorithins
in misregistrationd which can be detected by the measure. cases where ground truth data is not available.

We computed the sensitivity for the data shown in Fig- NRR algorithms can be divided into two general classes:
ures 10, 9(a), & 9(b). The averaged sensitivity over theairwise and groupwise Pairwise algorithms can be defined
range of deformations is plotted in Figure 11 for the variouss those which register a pair of images. Registration a@os
measures. group is then defined by successive applications of the basic

The first point to note is that there are statistically-sigant pairwise algorithm. For example, all images in the training
differences between the various measures. Specificityoiwish set can each be pairwise-registered to some chosen referenc
to be superior both to generalisation and most importastly, example (e.g., [11]). However, this suffers from the prable
perior to the ground-truth based measure of Tanimoto guerldhat, in general, the result obtained depends on the chdice o
Furthermore, we can see that shuffle radiildf and2.1 for reference. Refinements of this basic approach are possible,
specificity give the most sensitive measure of all thoseistud where the reference is artificially generated and updated so

as to be representative of the group of images as a whole.

Volume weighted
Equally weighted

Inverse weighted

ojoufuR ],

| Label complexity weighted

= Shuffle distance radius 1

ig

I— Shuffle distance radius 1.5

1j10ad

8]

[ Shuffle distance radius 2.1

Al

I Shuffle distance radius 3.7
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But the important point to note is that the correspondence fo This training set was then registered using the 3 registrati

a single training image is defined w.r.t. this reference ¢ivhi algorithms detailed above. For each algorithm, an appearan

enables consistency of correspondence to be maintainessacmodel was then built from the found correspondence, with

the group), and that the information used in determining tivarying numbers of modes included in the model. An example

correct correspondence is limited to that contained initgles of such a model is shown in Figure 12. The Specificity and

training set image and the single reference image. Generalisation of each such model was then computed. The
It can be seen that this approach explicitly does not takesults as a function of the number of modes are shown in

advantage of the full information in the group of imagefigure 13.

when defining correspondence [20]. Making better use of all

the available information is the aim gfoupwiseregistration A Results

algorithms, where correspondence is determined across thﬁ"he first point to note about the results shown in Figure 13

whole set in a principled manner. . .
! : - .. is, that as we might have expected from the results shown
One such groupwise method is the Minimum Description’ . o . Lo
n Figure 11, Generalisatiods is not able to discriminant

Length (MDL) formulation as developed by the authors [15 jetween the three NRR algorithms, having insufficient sensi

The main idea is that the appearance quel generated fr |\r/1|}y. Specificity, however, as we might have expected fiitan
the current correspondence is made an integral part of the

. . ; . superior sensitivity, can discriminate between the paiewand
process of further registration, the model being contiyual P Y P

updated as the process of registration proceeds. The ijecgroupmse method.s_, .bOth groupwise reglstra_'uops give ipwe
: : . ' L . : values of the specificity measure than the pairwise algorith
function for this groupwise registration is a minimum déscr .~ . .
. . : : .This difference persists as we vary the number of model
tion length [21] one, which envisages encrypting the entire . . L
. modes and is statistically significant. We can conclude that
training set as a coded message, the length of the message

in bits being the objective function. But rather than enogdi Z: Oer:thT:hese groupwise algorithms is superior to theae

the raw images, the encoding proceeds by describing eac here is possibly a slight difference when the two groupwise

training set image as a series of shape and texture defomsati . .
applied to some reference. That is, the encoding expliaiths methods are compared, since one graph tends to lie lower than
PP ' ' g exp the other. However, when we compare this difference to the

the mode_l rep_resentatlon of each image from the appearaner, ot the error bars on the points, it is not large enouglugor
model built using the found correspondence. The full enapdi ; - o )
. . . state that there is a statistically significant differeneséneen
hence also has to contain the details of the model itself, g . :
: ; he two groupwise variants.
the discrepancy between the actual image and the appearance
model representation of that image.

For the purposes of comparing NRR algorithms, we con- VI. DISCUSSION ANDCONCLUSIONS
sider the following: We have described a model-based approach to assessing

e accuracy of non-rigid registration of groups of images.
e most important thing about this method is that it does not
require any ground truth data, but depends only on the rgini

« Pairwise registration of each training set image to a fix
reference image, using an image from the training set
a reference

« Groupwise registration based on the MDL algorithrﬁ|ata '.tsel.f' . .
described above, but admitting two slight variants of the Validation experiments were conducted, based on pertgrbin
algorithm ’ correspondence obtained through registration. These show

In eff he diff b h ) . that our method is able to detect increasing mis-regisinati
ne _ect, the differences between t € two groupwise Vm_'a sing just the registered image data. The results obtaioed f
considered are the way they constrain or do not constrain

I q 1 def : h detai oo fterent sizes of shuffle neighbourhood show that the use of
allowed spatial deformations. The exact details are neveelt o, e distance rather than Euclidean distance improves th
here; what is relevant is that both are groupwise, but with

; : rgnge of mis-registration over which we can detect significa
slight difference.

_ _ changes in registration accuracy.
We hence would expect that the groupwise variants shouldy ;e importantly, we have shown that what is being mea-

be close together in performance, but that both should gi¥Gyeq by our model-based approach varies monotonically wit
significantly better registration results than the s_|mrziarvp|se an overlap measure based on ground truth. And not only that,
approach. These three algorithms present a suitable tehaeofwe have shown that in the case considered here, the model-

discrimination ability of our proposed evaluation frameko based measure of specificity is in fact of greater sensitivit
For these evaluation experiments, we limited ourselves

to 2D images, which allows larger-scale experiments to be

performed. : _ :
The raw dataset consisted &f = 104 3D MR images of ﬁ .
normal brains!. These were then affinely aligned, and a sing! ;I‘ }‘ I\ : x Jx
B O G G &

e

slice extracted from each, at equivalent locations. Thiscke %
formed our training set of 104 2D slices.

1The age-matched normals in a dementia study generously pcowie Fig- 12.  Appearance model which was built automatically byugraise
Neil Thacker and Paul Bromiley, Manchester. registration. First mode is showr;2.5 standard deviations.
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Fig. 13. Generalisation and Specificity of the three regigin methods as a function of the number of modes included impipearance model.

than the overlap measure based on ground truth, hence danB. Zitova and J. Flusser, “Image registration methods: A surieyege
reliably detect smaller differences in registration perfance. and Vision Computingvol. 21, pp. 977 — 1000, 2003.

. . 3] J. M. Fitzpatrick and J. B. West, “The distribution of get registration
Flna"y' we have applled our model-based measure to ag- error in rigid-body point-based registratiodEEE Trans. Med. Imag.

sessing the quality of 3 different registration algorithrithe vol. 20, pp. 917-927, 2001.
results obtained were in agreement with the results oldaind4] P. Hellier, C. Barillot, I. Corouge, B. Giraud, G. L. Gdbar, L. Collins,

. . . . . A. Evans, G. Malandain, and N. Ayache, “Retrospective atidn of
during the validation phase as regards the relative seityitif inter-subject brain registration,” iRroceedings of Medical Image Com-

the two model-based measures. We were able to show a quan- puting and Computer-Assisted Intervention (MICCAI), LeetNotes in
titative improvement in performance of groupwise regtstra - goé“p“tl‘?r SCEHCG/PL zzgsj. CSFglnger\,/ZleOL pp. f258_—2m<;5- _

. P f - . Rogelj, S. Kovacic, and J. C. Gee, “Validation of a ngiut registra-
algorlthms when Compargd to rEpeated pairwise .reglstrath tion algorithm for multimodal data,” ifProceedings of Medical Imaging
We note that the experiments were conducted in 2D, which 2002, Image Processing, SPIE Proceedingsl. 4684, 2002, pp. 299—
allowed larger-scale experiments to be conducted. However 307.

the extension to 3D or higher is trivial, the only issue beingd®! " g'e ;ecnhhngge'h < OTSae””Sr'LA'GCHiﬁn;':g o JOH;‘V‘\?EEQ‘ “\(;éﬁdH:yes

that for higher-dimensional images, the calculation offfu of non-rigid registration using finite element methods, Lizcture Notes
distances (if used), will considerably increase the comput in Computer Sciencevol. 2082.  Springer, 2001, pp. 344-357.
tional load [7] W. R. Crum, O. Camara, D. Rueckert, K. Bhatia, M. Jenkinsamgl

. . . D. L. G. Hill., “Generalised overlap measures for assessnigpaiovise
In the above we used linear appearance modelling in our ang groupwise image registration and segmentationProceedings of

evaluation, but in principle, any generative model-buitdi Medical Image Computing and Computer-Assisted Interaen(MIC-
approach could be used. This method is totally general, and g‘?'gg'-_el%gre Notes in Computer Scienel. 3749.  Springer, 2005,

can pe applied to the results of any registrat'ion_ _algorithm. [8] T. Cootes, G. Edwards, and C. Taylor, “Active appearamzzlels,” in
This model-based method represents a significant advance Proceedings of the European Conference on Computer VIEQCY),

as regards the important problem of evaluating non-rigid ~Lecture Notes in Computer Scienoel. 1407 Springer, 1998, pp.

regi_stration a'QO'_'itth_- It _es.tablishes an entirely_ ot¥ec (g) G. J. Edwards, T. F. Cootes, and C. J. Taylor, “Face reitiognusing

basis for evaluation, since it is free from the requirement 0  active appearance models,” Rroceedings of European Conference on

ground truth data. Computer Vision, Lecture Notes in Computer Scienoé 2. Springer,
1998, pp. 581-595.

[10] A.F. Frangi, D. Rueckert, J. A. Schnabel, and W. J. Neas$Automatic
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