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Abstract— This paper presents a generic method for assessing
the quality of non-rigid registration (NRR) algorithms, that does
not depend on the existence of any ground truth, but depends
solely on the data itself. The data is taken to be a set of
images. The output of any non-rigid registration of such a
set of images is a dense correspondence across the whole set.
Given such a dense correspondence, it is possible to build a
generative statistical model of appearance variation across the
set. Evaluating the quality of the registration algorithm is hence
mapped to the problem of evaluating the quality of the resultant
statistical model; that is, when the model is compared to the
image data from which it was generated. It should be noted that
this approach does not depend on the specifics of the registration
algorithm used or on the specifics of the modelling approach used.

We derive indices of model specificity and generalisation that
can be used to assess the quality of such models. This approach
is validated by comparing our assessment of registration quality
with that derived from ground-truth anatomical labelling. We
demonstrate that not only is our approach capable of reliably
assessing NRR without ground truth, but it is also more sensitive
than the ground-truth-dependent approach. Finally, to demon-
strate the practicality of our method, different NRR algorithms
– both pairwise and groupwise– are compared in terms of their
performance on MR brain data.

I. I NTRODUCTION

NON-RIGID registration (NRR) of both pairs and groups
of images has been used increasingly in recent years,

as a basis for medical image analysis. Applications include
structural analysis, atlas matching and change analysis [1].
The problem is highly under-constrained and a plethora of
different algorithms have been proposed.

The aim of non-rigid registration is to automatically find
a meaningful, dense correspondence across a pair (hence
pairwise registration), or group (hencegroupwise) of images.
A typical algorithm consists of a representation of the de-
formation fields that encode the spatial variation between
images, an objective function that quantifies the degree of mis-
registration, and a method of optimising the objective function.
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And different algorithms tend to produce slightly different
results when applied to the same set of images [2] - there is
a need for methods to assess the results of such registrations.

Various methods have been proposed for assessing the re-
sults of NRR [3]–[6]. One obvious approach is to compare the
results of the registration to anatomical ground truth. However,
this suffers from the problem that such ground truth is often
difficult to obtain. For instance, expert annotation is time
consuming, subjective, and very difficult in 3D. Other evalua-
tion approaches involve the construction of artificial testdata,
which limits application to ‘off-line’ evaluation. Furthermore,
such artificially generated and manipulated correspondence
does not necessarily capture the type of deformation seen in
real data. These problems motivate the search for a method of
evaluation that does not depend on the existence of ground-
truth data, or on making possibly unrealistic assumptions about
the nature of the actual correspondence.

The method we will present here is based on the idea of
constructing statistical models of sets of images, models which
consider both the shape and texture variation of the objectsim-
aged (appearance models). Such models have been extensively
used as the basis for image interpretation by synthesis. The
link between registration and modelling is given by the fact
that the output of registration is a dense correspondence across
the set of images. Such a set of correspondences is required
to construct the shape and texture models [8], [9]. Varying
the correspondence across a set varies the appearance model
built upon this correspondence. The obvious corollary is that
a better correspondence ought to produce a better appearance
model. This allows use to map the problem of evaluation of
registration to that of evaluating the model generated fromthe
output of the registration.

The structure of this paper is as follows. We first give a
brief description of the background to both the assessment of
registration, and of the construction of appearance models, and
explain in more detail the link between the two. We present
quantitative measures which can be used to assess the quality
of such models, hence of the registration upon which we
will build such models. The behavior of these measures is
investigated, and in particular, their behavior when compared
to an assessment based on ground-truth data. Our validation
results confirm our method to be in tight correlation with
ground truth. Finally, we use the measures we have developed
to compare various registration algorithms when applied to
the registration of sets of 2D MR images of human brains. In
particular, we are able to show the quantitative superiority of
groupwise registration over a pairwise method.
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II. BACKGROUND

A. Non-Rigid Registration

The aim of non-rigid registration is to find an anatomically
meaningful, dense (i.e., pixel-to-pixel or voxel-to-voxel) cor-
respondence across a set of images. This correspondence is
typically encoded as a spatial deformation field between each
pair of images, so that when one image is deformed onto
another, corresponding structures are brought into alignment.
Such non-rigid registration of medical images is a difficult
problem, due to the size and complexity of cross-individual
anatomical variation.

A typical registration algorithm proceeds by optimising
some objective function. The objective function depends on,
for example, the degree of deformation present in the spatial
deformation fields defining the correspondence, and the image
similarity that remains after the deformation has been applied.
Also to be defined are the representation used for the defor-
mation fields, and the method used for finding the optimum of
the objective function. Varying any of these factors produces
a different registration algorithm, which in general, tends to
produce a slightly different resulting correspondence.

B. Assessment of Non-Rigid Registration

We here describe several commonly-used approaches to the
problem of assessing the results of registration.
Recovery of Deformation Fields: One obvious way to test
the performance of a registration algorithm is to apply it
to someartificial data where the actual correspondence is
known. Such test data is typically constructed by applying
sets of known deformations (either spatial or textural) to actual
images. This artificially-deformed data is then registered. The
process of evaluation is based on comparison between the de-
formation fields recovered by the registration and those which
have originally been applied [5], [6]. This type of approachcan
be used to test NRR methods ’off-line’. However, the validity
of this method presumes that we have the ability to construct
artificial deformations which are sufficiently close to the types
of deformation seen in real-world situations. Furthermore,
there are situations where such artificial data sets are a poor
representation of the actual variation between images. For
example, images taken from different subjects may display
a much more complicated and extensive variation that that
which can be simulated by such simple deformations.
Overlap-based Assessment: The overlap-based approach
involves measuring the overlap of anatomical annotations
before and after registration. A good NRR algorithm will be
capable of aligning similar image intensities – in particular
those which indicate the location of anatomical structures.
Alignment of image intensities leads to better overlap between
anatomical structures, so the two are closely-correlated.

Similar approaches involve measurement of the mis-
registration of anatomical regions of significance [3], [4], and
the overlap between anatomically equivalent regions obtained
using segmentation. This process is either manual or semi-
automatic [4], [5]. Although these methods cover a general
range of applications, they are labour-intensive and are often

prone to errors. They also rely on one’s ability to faithfully
extract anatomical structures from the image intensities alone.

This paper explores one such method, which assesses reg-
istration using the spatial overlap. The overlap is defined
using Tanimoto’s formulation of corresponding regions in the
registered images. The correspondence is defined by labels
of distinct image regions (in this case brain tissue classes),
produced by manual mark-up of the original images (ground-
truth labels). A correctly registered image set will exhibit
high relative overlap between corresponding brain structures in
different images and, in the opposite case – low overlap with
non-corresponding structures. A generalised overlap measure
[7] is used to compute a single figure of merit for the overall
overlap of all labels over all subjects:

O =

∑

pairs,k

∑

labels,l
αl

∑

voxels,i
MIN(Akli, Bkli)

∑

pairs,k

∑

labels,l
αl

∑

voxels,i
MAX(Akli, Bkli)

(1)

where i indexes voxels in the registered images,l indexes
the label andk indexes the two images under consideration.
Akli and Bkli represent voxel label values in a pair of
registered images and are in the range[0, 1]. TheMIN() and
MAX() operators are standard results for the intersection and
union of a fuzzy set. This generalised overlap measures the
consistency with which each set of labels partitions the image
volume.

The parameterαl affects the relative weighting of different
labels. With αl = 1, label contributions are implicitly vol-
ume weighted with respect to one another. This means that
large labels contribute more to the overall measure. We have
also considered the cases whereαl weights for the inverse
labelled region volume (which makes the relative weighting
of different labels equal), whereαl weights for the inverse
label volume squared (which gives regions of smaller volume
higher weighting) and whereαl weights for a measure of label
complexity. We define label complexity rather arbitrarily as the
mean absolute voxel intensity gradient in the labelled region.

More formulations of overlap, other than Tanimoto’s, have
also been investigated. Their results were shown to be less
accurate and they are omitted in the interest of brevity.
While our main focus remains assessment that requires no
ground truth, the approach above provides a good reference
to compare against for validity with respect to ground-truth
annotation.

C. Statistical Models of Appearance

There are many approaches to building statistical models
of the appearance variation of objects which encompass the
variation of both shape and texture that underlies such appear-
ance variation. In particular, we use the generative appearance
models as introduced by Cootes et al. [8], [9]. They have
been applied extensively in medical image analysis [10]–[12],
among other related domains, and successfully applied to brain
morphometry, and also to the time-series analysis of cardiac
data (e.g., [13]).

The construction of such an appearance model from a
set of images depends on the existence of a dense spatial
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Fig. 1. The effect of varying the first (top row), second, and third model
parameters of a brain appearance model by±2.5 standard deviations

correspondence across the set. In many manual or semi-
automatic methods of model building, this dense correspon-
dence is extrapolated and interpolated from the correspondence
of some set of anatomically or user-relevant landmark points.
In the automatic method that will be used here, the dense
correspondence is given directly as the output of the NRR
algorithm. Hence the relevant landmark positions in this case
are in effect as dense as the pixels/voxels in the images
registered.

In either case, the shape variation is represented in terms
of the motions of these sets of landmark points. Using the
notation of Cootes [8], the shape (configuration of landmark
points) of a single example can be represented as a vector
x formed by concatenating the coordinates of the positions
of all the landmark points for that example. The texture is
represented by a vectorg, formed by concatenating the image
values for the shape-free texture sampled from the image.

In the simplest case, we model the variation of shape and
texture in terms of multivariate gaussian distributions, using
Principal Component Analysis (PCA) [14]. We hence obtain
linear statistical models of the form:

x = x + Psbs

g = g + Pgbg (2)

wherebs are shape parameters,bg are texture parameters,x

andg are the mean shape and texture, andPs andPg are the
principal modes of shape and texture variation respectively.

In generative mode, the input shape (bs) and (bg) texture
parameters can be varied continuously, allowing the generation
of sets of images whose statistical distribution matches that of
the model we have constructed.

In many cases, the variations of shape and texture are
correlated. If this correlation is taken into account, we then

obtain a combined statistical model of the more general form:

x = x̄ + Qsc

g = ḡ + Qgc (3)

where the model parametersc control both shape and texture,
and Qs, Qg are matrices describing the general modes of
variation derived from the training set. The effect of varying
one element ofc for a model built from a set of 2D MR brain
image is shown in Fig. 1.

In many cases, we wish to distinguish between the mean-
ingful shape variation of the objects under consideration,and
that apparent variation in shape that is due to the positioning of
the object within the image (the pose of the imaged object). In
that case, the appearance model is generated from an (affinely)
aligned set of images. Point positionsxim in the original
image frame are then obtained by applying the relevant pose
transformationTt(·):

xim = Tt(xmodel) (4)

wherexmodel are the points in the model frame, andt are the
pose parameters. For example, in 2D,Tt could be a similarity
transform with four parameters describing the translation,
rotation and scale of the object.

In an analogous manner, we can also normalise the image
set with respect to the mean image intensities and image
variance,

gim = Tgtrans(gmodel), (5)

where Tgtrans consists of a shift and scaling of the image
intensities.

For further details as regards the exact implementation of
appearance models, see [8], [9].

As noted above, a meaningful dense groupwise correspon-
dence is required before an appearance model can be built.
One way to obtain such a correspondence is by extrapolating
from expert annotation. However, this annotation process is
extremely time-consuming and subjective, particularly for 3D
data.

The output of groupwise NRR is such a correspondence,
hence it was a natural next step to build automatic statistical
models using the results of NRR algorithms [10], [11].

This link between registration and modelling is further
exploited in the Minimum Description Length (MDL) [15]
algorithm for non-rigid registration, where modelling becomes
an integral part of the registration process. This latter work will
be one of the registration strategies used later in this paper.

III. E VALUATION METHOD

In the previous section, we described how the results of a
non-rigid registration algorithm can be used to build a genera-
tive statistical model of image appearance. In this section, we
present our method for quantitatively assessing the quality of
the model built from the registered data, hence for evaluating
the quality of the non-rigid registration algorithm from which
this model was derived. We also investigate several of the
possible choices for model evaluation, the aim being to find
one which is both robust, and gives the greatest sensitivity.
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Fig. 2. The model evaluation framework: A model is constructed from the
training set and then images are generated from the model. The training set
of images and the set generated by the model can be viewed as clouds of
points in image space.

A. Specificity and Generalisation

A good model of some training set of data should possess
several properties. Firstly, the model should be able to effec-
tively extrapolate and interpolate from the training data,to
produce a range of images from the same general class as
those seen in the training set. We will call thisgeneralisation
ability. Conversely, the model should not produce images
which cannot be considered as valid examples of the class
of object imaged. That is, a model built from brain images
should only generate images which could be considered as
valid images of possible brains. We will call this thespecificity
of the model.

In previous work, quantitative measures ofspecificityand
generalisationwere used to evaluate shape models [16]. We
here present an extension of these quantitative measures.

Consider first the training data for our model, that is, the set
of images which were the input to our NRR algorithm. Without
loss of generality, each training image can be considered as
a single point in image space (see Figure 2). A statistical
model is then a probability density functionp(z) defined on
this space. To be specific, let{Ii : i = 1, . . . N} denote the
N images of the training set when considered as points in
image space. Letp(z) be the probability density function of
the model.

We then define our basic quantitative measure of thespeci-
ficity S of the model with respect to the training setI = {Ii}
as follows:

Sλ(I; p)
.
=

∫

p(z) min
w.r.t.i

(|z − Ii|)λ
dz, (6)

where| · | is a distance on image space, raised to some positive
power λ. That is, for each pointz on image space, we find
the nearest-neighbour to this point in the training set, andsum
the powers of the nearest-neighbour distances, weighted bythe
pdf p(z). Greater specificity is indicated bysmallervalues of
S, and lesser bylarger. In Figure 3, we give diagrammatic
examples of cases with varying specificity.

The integral in equation 6 is approximated using a Monte-
Carlo method. A large random set of images{Iµ : µ =

Fig. 3. Training set (points) and model pdf (shading) in image space.Left:
A model which is specific, but not general.Right: A model which is general,
but not specific.

1, . . .M} is generated, having the same distribution as the
model pdfp(z). The estimate of the specificity (6) is:

Sλ(I; p) ≈ 1

M
M
∑

µ=1

min
i

(|Ii − Iµ|)λ
, (7)

with standard error:

σS =
SD

µ

{

min
i
{|Ii − Iµ|λ}

}

√
M− 1

, (8)

whereSD
µ

is the standard deviation of the set of measurements

for the set of values ofµ.
The measure of generalisation is then defined in an analo-

gous manner:

Gλ(I; p)
.
=

1

N
N

∑

i=1

min
µ

(|Ii − Iµ|)λ
, (9)

with standard error:

σG =

SD
i

{

min
µ

{|Ii − Iµ|λ}
}

√
N − 1

. (10)

That is, for each member of the training setIi, we compute
the distance to the nearest-neighbour in the sample set{Iµ}.
Large values ofG correspond to model distributions which
do not cover the training set and have poor generalisation
ability, whereas small values ofG indicate models with better
generalisation ability.

We note here that both measures can be further extended,
by considering the sum of distances to k-nearest-neighbours,
rather than just to the single nearest-neighbour. However,in
what follows, we restrict ourselves to just the single nearest-
neighbour case.

B. Distances in Image Space

The most straightforward way to measure the distance
between images is to treat each image as a vector formed by
concatenating the pixel/voxel intensity values, then takethe
Euclidean distance. It means that each pixel/voxel in one im-
age is compared against its spatially corresponding pixel/voxel
in another image. Although this has the merit of simplicity,it
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Fig. 4. The calculation of a shuffle difference image

Fig. 5. Examples of the shuffle difference image: from one image to a second
image (left), from the second image to the first (centre), and the symmetrical
shuffle distance image (right)

does not provide a very well-behaved distance measure since
it increases rapidly for quite small image misalignments [17].
This observation led us to consider an alternative distance
measure, based on the ’shuffle difference’, inspired by the
’shuffle transform’ [18]. If we have two imagesI1(x) and
I2(x), then the shuffle distance between them is defined as

Ds(I1, I2) =
1

np

∑

x

min
y∈Nr(x)

|I1(x) − I2(y)| (11)

where there arenp pixels (or voxels) indexed byx, andNr(x)
is the set of pixels in a neighbourhood of radiusr aroundx.

The idea is illustrated in Figure 4. Instead of taking the
sum-of-squared-differences between corresponding pixels, the
minimum absolute difference between each pixel in one image
and the values in a neighbourhood around the corresponding
pixel is used. This is less sensitive to small misalignments, and
provides a better-behaved distance measure. The tolerancefor
misalignment is dependent on the size of the neighbourhood
(r), as is illustrated in Figure 6. It should be noted that the
shuffle distance as defined above depends on the direction
in which it is measured (see Figure 5), hence is not a true
distance. It is trivial to construct a symmetric shuffle distance,
by averaging the distance calculated both ways between a
pair of images. However, it was found that the improvement
obtained using this was not significant, and did not justify
the increased computation time. In what follows, we use the
asymmetric shuffle distance.

Fig. 7. An example affinely-aligned brain image and its accompanying
anatomical labels, both overlaid and expanded, for gray matter, white matter,
the lateral ventricles, and the caudate nucleus. Labels arealso divided into
left and right.

IV. VALIDATION OF THE APPROACH

In this section, we present experiments which investigate
the behaviour of our evaluation method. The principal idea
is that of producing perturbed datasets, with progressive de-
grees of degradation. Ideally, our specificity and generalisation
measures should vary monotonically with the degree of degra-
dation.

The sensitivity of our method, that is, the degree of change
that it can reliably detect, is an important issue, which is
further explored in Section V-A.

A. Brain Dataset with Ground Truth

Our initial dataset consisted ofN = 36 transaxial mid-
brain 2D slices, extracted at equivalent levels from a set of
T1-weighted 3D MR scans of normal subjects. The ground-
truth data for this set consisted of dense (pixel by pixel) binary
tissue labels, the tissue classes being gray and white matter, the
caudate nucleus, and CSF within the lateral ventricles. These
labels were further divided into left and right. An example
image and it’s labelling is shown in Figure 7. The training
set was non-rigidly registered using the Minimum Description
Length (MDL) algorithm [15]. This registration was used as
the starting point for the evaluation.

B. Perturbing Ground Truth

The evaluation now proceeded by considering perturbations
about this found registration.

A test set of different registrations was created by applying
smooth pseudo-random spatial warps (based on biharmonic
Clamped Plate Splines [19]) to each image in the registered
set. Each warp was controlled by 25 randomly placed knot-
points, each displaced in a random direction by a distance
drawn from a Gaussian distribution whose mean controlled
the average magnitude of pixel displacement over the whole
image. Example images from the test set are shown in Fig-
ure 8.

Overall, the above approach was applied 10 times using 10
different random seeds. The 10 different warp instantiations
were generated for each image and for each of seven progres-
sively increasing values of average pixel displacement.

The perturbed correspondence across the set is then that
given by applying the originally-found correspondence from
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Fig. 6. A comparison between shuffle distance using varying size neighbourhoods (radiusr). Left: original image,right: warped image,centre, from the
left: shuffle distance withr = 1(Euclidean),1.5, 2.9 and3.7 pixels.

Fig. 8. Examples of registration degradation for increasingscales of smooth
CPS warps. Mean pixel displacement for each image is shown.

the initial registration, but now applied to thedeformedimage
sets. Hence the correspondence becomes progressively worse
as the degree of image deformation increases.

C. Validation Results

Registration quality was measured, for each level of reg-
istration degradation (perturbation), using several variants of
each of the proposed assessment methods:

• Tanimoto overlap for the ground-truth data labels (1) for
varying values of the label weightingαl.

• Specificity & Generalisation ((7) & (9), λ = 1), for
varying definitions of image distance (Euclidean and
shuffle distances), and for varying values of the shuffle
neighbourhood radius.

In Figure 10 are the results from the Tanimoto overlap-
based measure (1), which computes a measure that is based
on ground truth, that is, the overlap of the annotated labels.

Fig. 10. Overlap measures (with corresponding errorbars) for the brain
dataset as a function of the degree of degradation of the registration cor-
respondence. The various graphs correspond to the various overlap measures
as defined in section II-B.

As can be seen from the Figure, all overlap measures de-
cay monotonically as a function of misregistration, showing
that our perturbed dataset does indeed have the systematic
behaviour we require.

Results for the measures of specificityS (7) and generalisa-
tion G (9) as a function of the magnitude of the displacement
are shown in Figures 9(a) & 9(b). Note that the values for
Generalisation and Specificity are in error form, i.e. they
increase with decreasing performance. The various graphs
are for differing choices of the distance on image space,
encompassing Euclidean distance, as well as shuffle distance
for varying values of the shuffle neighbourhood radiusr.

It should be noted that both measures show a monotonic
decrease in performance with respect to the size of the regis-
tration degradation, for all choices of image distance. Since the
overlap measure also shows such a monotonic decrease, this
validates the model-based metrics inasmuch as they then also
vary monotonically with respect to the ground truth measure.

What remains to be investigated are the effects of varying
the various parameters in the definitions of the model-based
measures. For the shuffle distance, the parameter is the neigh-
bourhood radiusr, the effect of which is studied in the next
section. We also investigate the various forms of the Tanimoto
overlap.
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(a) Generalisation (b) Specificity

Fig. 9. Generalisation & Specificity (with corresponding error bars) for the brain dataset as a function of the degree of degradation of the registration
correspondence, and for varying definitions of image distance, that is, varying radius of the shuffle neighbourhood.

We note here that various other overlap measures as pos-
sible. For instance, we also considered the Dice overlap, but
it was found to be inferior to the Tanimoto, and so is not
considered further.

D. Measuring Sensitivity

As well as showing monotonicity, a good measure of
registration quality should also sensitive. That is, it should
enable us to measure small deviations from the optimum. If
we can evaluate the sensitivity of a measure we will be able
to fully compare the merits of various options.

The size of perturbation than can be detected in the valida-
tion experiments will depend both on the slope of the graphs of
measure against degree of deformation, and also on the error
on the measure. To quantify this, we define the sensitivity of
a measure as follows.

Supposem(d) is the value of the measure for some degree
of deformationd. We then define the measure sensitivity as:

D(m; d) =
1

σ̄

(

m(d) − m(0)

d

)

,

whereσ is the mean error in the estimate ofm over the range.
D(m; d) is the change ind required form(d) to change by one
noise standard deviation, which indicates the limit of changes
in misregistrationd which can be detected by the measure.

We computed the sensitivity for the data shown in Fig-
ures 10, 9(a), & 9(b). The averaged sensitivity over the
range of deformations is plotted in Figure 11 for the various
measures.

The first point to note is that there are statistically-significant
differences between the various measures. Specificity is shown
to be superior both to generalisation and most importantly,su-
perior to the ground-truth based measure of Tanimoto overlap.
Furthermore, we can see that shuffle radii of1.5 and2.1 for
specificity give the most sensitive measure of all those studied.

Fig. 11. Sensitivity of different NRR assessment methods

V. A SSESSING ANDCOMPARING REGISTRATION

ALGORITHMS

Having shown the validity of the model-based measures
of registration quality, we now proceed to the reason for
defining these measures, that is, to enable comparison of the
performance of various non-rigid registration algorithmsin
cases where ground truth data is not available.

NRR algorithms can be divided into two general classes:
pairwise and groupwise. Pairwise algorithms can be defined
as those which register a pair of images. Registration across a
group is then defined by successive applications of the basic
pairwise algorithm. For example, all images in the training
set can each be pairwise-registered to some chosen reference
example (e.g., [11]). However, this suffers from the problem
that, in general, the result obtained depends on the choice of
reference. Refinements of this basic approach are possible,
where the reference is artificially generated and updated so
as to be representative of the group of images as a whole.
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But the important point to note is that the correspondence for
a single training image is defined w.r.t. this reference (which
enables consistency of correspondence to be maintained across
the group), and that the information used in determining the
correct correspondence is limited to that contained in the single
training set image and the single reference image.

It can be seen that this approach explicitly does not take
advantage of the full information in the group of images
when defining correspondence [20]. Making better use of all
the available information is the aim ofgroupwiseregistration
algorithms, where correspondence is determined across the
whole set in a principled manner.

One such groupwise method is the Minimum Description
Length (MDL) formulation as developed by the authors [15].
The main idea is that the appearance model generated from
the current correspondence is made an integral part of the
process of further registration, the model being continually
updated as the process of registration proceeds. The objective
function for this groupwise registration is a minimum descrip-
tion length [21] one, which envisages encrypting the entire
training set as a coded message, the length of the message
in bits being the objective function. But rather than encoding
the raw images, the encoding proceeds by describing each
training set image as a series of shape and texture deformations
applied to some reference. That is, the encoding explicitlyuses
the model representation of each image from the appearance
model built using the found correspondence. The full encoding
hence also has to contain the details of the model itself, and
the discrepancy between the actual image and the appearance
model representation of that image.

For the purposes of comparing NRR algorithms, we con-
sider the following:

• Pairwise registration of each training set image to a fixed
reference image, using an image from the training set as
a reference

• Groupwise registration based on the MDL algorithm
described above, but admitting two slight variants of the
algorithm.

In effect, the differences between the two groupwise variants
considered are the way they constrain or do not constrain the
allowed spatial deformations. The exact details are not relevant
here; what is relevant is that both are groupwise, but with a
slight difference.

We hence would expect that the groupwise variants should
be close together in performance, but that both should give
significantly better registration results than the simple pairwise
approach. These three algorithms present a suitable test ofthe
discrimination ability of our proposed evaluation framework.

For these evaluation experiments, we limited ourselves
to 2D images, which allows larger-scale experiments to be
performed.

The raw dataset consisted ofN = 104 3D MR images of
normal brains.1. These were then affinely aligned, and a single
slice extracted from each, at equivalent locations. This hence
formed our training set of 104 2D slices.

1The age-matched normals in a dementia study generously provided by
Neil Thacker and Paul Bromiley, Manchester.

This training set was then registered using the 3 registration
algorithms detailed above. For each algorithm, an appearance
model was then built from the found correspondence, with
varying numbers of modes included in the model. An example
of such a model is shown in Figure 12. The Specificity and
Generalisation of each such model was then computed. The
results as a function of the number of modes are shown in
Figure 13.

A. Results

The first point to note about the results shown in Figure 13
is, that as we might have expected from the results shown
in Figure 11, GeneralisationG is not able to discriminant
between the three NRR algorithms, having insufficient sensi-
tivity. Specificity, however, as we might have expected fromits
superior sensitivity, can discriminate between the pairwise and
groupwise methods; both groupwise registrations give lower
values of the specificity measure than the pairwise algorithm.
This difference persists as we vary the number of model
modes and is statistically significant. We can conclude that
either of these groupwise algorithms is superior to the pairwise
algorithm.

There is possibly a slight difference when the two groupwise
methods are compared, since one graph tends to lie lower than
the other. However, when we compare this difference to the
size of the error bars on the points, it is not large enough forus
state that there is a statistically significant difference between
the two groupwise variants.

VI. D ISCUSSION ANDCONCLUSIONS

We have described a model-based approach to assessing
the accuracy of non-rigid registration of groups of images.
The most important thing about this method is that it does not
require any ground truth data, but depends only on the training
data itself.

Validation experiments were conducted, based on perturbing
correspondence obtained through registration. These show
that our method is able to detect increasing mis-registration
using just the registered image data. The results obtained for
different sizes of shuffle neighbourhood show that the use of
shuffle distance rather than Euclidean distance improves the
range of mis-registration over which we can detect significant
changes in registration accuracy.

More importantly, we have shown that what is being mea-
sured by our model-based approach varies monotonically with
an overlap measure based on ground truth. And not only that,
we have shown that in the case considered here, the model-
based measure of specificity is in fact of greater sensitivity

Fig. 12. Appearance model which was built automatically by group-wise
registration. First mode is shown,±2.5 standard deviations.
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Fig. 13. Generalisation and Specificity of the three registration methods as a function of the number of modes included in theappearance model.

than the overlap measure based on ground truth, hence can
reliably detect smaller differences in registration performance.

Finally, we have applied our model-based measure to as-
sessing the quality of 3 different registration algorithms. The
results obtained were in agreement with the results obtained
during the validation phase as regards the relative sensitivity of
the two model-based measures. We were able to show a quan-
titative improvement in performance of groupwise registration
algorithms when compared to repeated pairwise registration.

We note that the experiments were conducted in 2D, which
allowed larger-scale experiments to be conducted. However,
the extension to 3D or higher is trivial, the only issue being
that for higher-dimensional images, the calculation of shuffle
distances (if used), will considerably increase the computa-
tional load.

In the above we used linear appearance modelling in our
evaluation, but in principle, any generative model-building
approach could be used. This method is totally general, and
can be applied to the results of any registration algorithm.

This model-based method represents a significant advance
as regards the important problem of evaluating non-rigid
registration algorithms. It establishes an entirely objective
basis for evaluation, since it is free from the requirement of
ground truth data.
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