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Evaluating Non-Rigid Registration without
Ground Truth

Roy S. Schestowitz, Carole J. Twining, Vladimir S. Petrović, Timothy F. Cootes, William R. Crum,
and Christopher J. Taylor

Abstract— We present a generic method for assessing the
quality of non-rigid registration (NRR), that does not require
ground truth, but rather depends solely on the registered images.
We consider the case where NRR is applied to aset of images,
providing a dense correspondence between images. Given this
correspondence, it is possible to build a generative statistical
model of appearance variation for the set. We observe that the
quality of the resulting model will depend on the quality of
the correspondence. We define measures of modelspecificityand
generalisationthat can be used to assess the quality of the model
and, hence, the quality of the correspondence from which it is
derived. The approach does not depend on the specifics of the
registration algorithm or the form of the model. We validate
the approach by measuring the change in model quality, as the
correspondence of an initially registered set of MR images of the
brain is progressively perturbed, and compare the results with
those obtained using a method based on the overlap of ground-
truth anatomical labels. We demonstrate that, not only is the
proposed approach capable of assessing NRR reliably without
ground truth, but that it also provides a more sensitive measure
of misregistration than the overlap-based approach. Finally we
apply the new method to compare the performance of three
different registration algorithms on a set of MR images of the
brain, demonstrating that the method is able to discriminate
between different methods of registration in a practical setting.

I. I NTRODUCTION

NON-RIGID registration (NRR) of both pairs and groups
of images is used widely as a basis for medical im-

age analysis. Applications include structural analysis, atlas
matching and change analysis [2]. The problem is highly
under-constrained and many different algorithms have been
proposed.

The aim of NRR is to find, automatically, a meaningful
dense correspondence between a pair (pairwise registration),
or across a group of images (groupwiseregistration). A typical
algorithm consists of a representation of the deformation fields
that encode the spatial variation between images, an objective
function that quantifies the degree of misregistration, and a
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method of optimising the objective function with respect to the
deformation fields. As different algorithms generally produce
different results when applied to the same set of images [3],
there is a clear need for methods to evaluate the results of
NRR.

Various methods of evaluation have been proposed [4], [6],
[7]. One approach is to construct artificial test data, applying
known deformations to real or synthetic images. This allows
algorithms to be evaluated by attempting to recover the applied
deformations, but does not allow the results of NRR to be
assessed ’in-line’ in real applications. An alternative approach
is to provide anatomical ground truth for the images to be
registered, then measure the degree of anatomical correspon-
dence following NRR. We have used one such method in this
paper as a ’gold standard’, but the need for expert annotation
of the images renders the approach too time-consuming and
subjective for routine application. These problems motivate the
search for a method of evaluation that can be used routinely
in real applications, without the need for ground truth.

The approach we have adopted is based on the observation
that, given a set of non-rigidly registered images – however
obtained – it is possible to construct a statistical model of
appearance that takes account of both the shape and texture
variation across the set. Models of this type have been used
extensively as a basis for image interpretation by synthesis [9],
[10]. To build a model we exploit the dense correspondence
across the set of images established by the NRR. The key idea
that underpins our approach is that, if the correspondence is
poor, the resulting appearance model will be unsatisfactory.
This observation allows us to transform the problem of eval-
uating non-rigid registration into one of evaluating the model
generated from the result of registration.

The structure of the paper is as follows. We first provide
a brief description of the background to both the assessment
of registration, and the construction of appearance models,
explaining in more detail the link between the two. We then
define two quantitative measures of model (and thus registra-
tion) quality, and discuss their implementation. The behavior
of these measures is investigated by measuring the effect of
deliberately perturbing the registration of an initially registered
set of images. The results are compared to those obtained using
a ’gold standard’ method of assessment, based on measuring
the overlap of manually annotated ground truth. The results
demonstrate that our new measures are closely correlated with
those based on ground-truth, and that the proposed approach
is actually more sensitive to misregistration. Finally, we use
the measures we have developed to compare three NRR
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algorithms applied to the registration of sets of 2D MR brain
images, demonstrating the superiority of a fully groupwise
registration algorithm over a repeated pairwise approach.

II. BACKGROUND

A. Non-Rigid Registration

The aim of non-rigid registration is to find an anatomically
meaningful, dense (i.e., pixel-to-pixel or voxel-to-voxel) cor-
respondence across a set of images. This correspondence is
typically encoded as a set of spatial deformation fields, one for
each image, such that when the deformations are applied to the
images, corresponding structures are brought into alignment.

A typical registration algorithm proceeds by optimising
some objective function that depends on the similarity of the
images after alignment, with respect to the set of deformations.
As well as the objective function, it is necessary to define
the representation used for the deformation fields and the
method for finding the optimum of the objective function.
Different choices lead to different registration results, and thus
competing methods of NRR – hence the need for an objective
and easily applied method of assessment.

B. Evaluation of NRR

Two main approaches to assessing the accuracy of NRR
algorithms have been described previously – one based on
the recovery of known deformation fields, the other based
on measuring the overlap of ground-truth annotations after
registration. Both approaches are valid, but neither is easy to
apply routinely, and both are better suited to off-line evaluation
of algorithms, rather thanin-line evaluation of the results of
NRR in practical applications.

1) Recovery of Deformation Fields:One obvious way to
test the performance of a registration algorithm is to apply
it to someartificial data where the correct correspondence is
known. Such test data is typically constructed by applying
sets of known deformations (either spatial or textural) to
real images. This artificially-deformed data is then registered,
and evaluation is based on comparing the deformation fields
recovered by the registration algorithm with those that were
applied originally [6], [7]. This approach can be used to
compare the performance of different NRR algorithms but,
since it relies on the creation of artificial test data, cannot be
applied in-line. Also, the validity of the approach depends on
the ability to construct artificial deformations which mimic
the variability found in real images of a given type, which is
difficult to guarantee.

2) Overlap-Based Methods:An alternative approach is
based on measuring the alignment [4], or overlap [4], [6]
of anatomical structures annotated by an expert, or obtained
as a result of (semi-)automated segmentation. This has the
disadvantege that manual annotation is expensive to obtain
and prone to subjective error, whilst reliable automated or
semi-automated segmentation is extremely difficult to achieve
– indeed if it was available it would often obviate the need
for NRR.

We have used an overlap-based approach to provide a ’gold
standard’ method of assessment. The method requires manual

annotation of each image – providing an anatomical/tissue
label for each voxel – and measures the overlap of corre-
sponding labels following registration, using a generalisation
of Tanimoto’s overlap coefficient [1]. Each label for a given
image is represented using a binary image but, after warping
and interpolation into a common reference frame, based on
the results of NRR, we obtain a set of fuzzy label images.
These are combined in a generalised overlap score [8] which
provides a single figure of merit aggregated over all labels and
all images in the set:

O =

∑
pairs,k

∑
labels,l

αl

∑
voxels,i

MIN(Akli, Bkli)∑
pairs,k

∑
labels,l

αl

∑
voxels,i

MAX(Akli, Bkli)
(1)

wherei indexes voxels in the registered images,l indexes the
labels andk indexes image pairs (all permutations are con-
sidered).Akli andBkli represent voxel label values for a pair
of registered images and are in the range[0, 1]. The MIN()
andMAX() operators are standard results for the intersection
and union of fuzzy sets. This generalised overlap measures
the consistency with which each set of labels partitions the
image volume. The standard error inO can be estimated in
the normal way from the standard deviation of the pairwise
overlaps.

The parameterαl affects the relative weighting of different
labels. Withαl = 1, label contributions are implicitly volume-
weighted with respect to one another. This means that large
structures contribute more to the overall measure. We have also
considered the cases whereαl weights labels by the inverse of
their volume (which makes the relative weighting of different
labels equal), whereαl weights labels by the inverse of their
volume squared (which gives regions of smaller volume higher
weighting), and whereαl weights labels by their complexity,
which we define as the mean absolute voxel intensity gradient
over the labelled region.

An overlap score based on a generalisation of the popular
Dice Similarity Coefficient (DSC) would also be possible
but, since DSC is related monotonically to the Tanimoto
Coefficient (TC) by DSC = 2TC/(TC+1) [5] we have not
considered this further.

C. Statistical Models of Appearance

Our approach to ground-truth-free evaluation of NRR de-
pends on the ability, given a set of registered images, to
construct a generative statistical model of appearance. We have
adopted the approach of Cootes et al [9], [10], who introduced
models that capture variation in both shape and texture (in the
graphics sense). These have been used extensively in medical
image analysis in, for example, brain morphometry and cardiac
time-series analysis [11]–[13]. Other approaches to appearance
modelling could also be considered as we rely only on the
generative property of such models in this application.

The key requirement in building an appearance model from
a set of images, is the existence of a dense correspondence
across the set. This is often defined by interpolating between
the correspondences of a limited number of user-defined
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Fig. 1. The effect of varying the first (top row), second, and third parameter
of a brain appearance model by±2.5 standard deviations

landmarks. Shape variation is then represented in terms of the
motions of these sets of landmark points. Using the notation of
Cootes et al [9], the shape (configuration of landmark points)
of a single example can be represented as a vectorx formed
by concatenating the coordinates of the positions of all the
landmark points for that example. The texture is represented
by a vectorg, formed by concatenating image values (texture)
sampled over a regular grid on theregistered image. This
means that the a given element ing is sampled from an
equivalent point in each image, assuming the registration is
correct.

In the simplest case, we model the variation of shape and
texture in terms of multivariate gaussian distributions, using
Principal Component Analysis (PCA) [15] to obtain linear
statistical models of the form:

x = x + Psbs

g = g + Pgbg (2)

wherebs are shape parameters,bg are texture parameters,x
andg are the mean shape and texture, andPs andPg are the
principal modes of shape and texture variation respectively.

In generative mode, the input shape (bs) and texture (bg)
parameters can be varied continuously, allowing the generation
of sets of images whose statistical distribution matches that of
the training set.

In many cases, the variations of shape and texture are
correlated. If this correlation is taken into account, we obtain
a combined statistical model of the more general form:

x = x̄ + Qsc

g = ḡ + Qgc (3)

where the model parametersc control both shape and texture,
and Qs, Qg are matrices describing the general modes of
variation derived from the training set. The effect of varying

different elements ofc for a model built from a set of 2D
MR brain images is shown in Figure 1. The number of modes
(columns) inQs andQg is one less than the number of images.
In practice, it is often possible to approximate images well,
using fewer modesm.

Generally, we wish to distinguish between the meaningful
shape variation of the objects under consideration, and the
apparent variation in shape that is due to the positioning of
the object within the image (the pose of the imaged object). In
this case, the appearance model is generated from an (affinely)
aligned set of images. Point positionsxim in the original
image frame are then obtained by applying the relevant pose
transformationTt(·):

xim = Tt(xmodel) (4)

wherexmodel are the points in the model frame, andt are the
pose parameters. For example, in 2D,Tt could be a similarity
transform with four parameters describing the translation,
rotation and scale of the object.

In an analogous manner, we can also normalise the image
set with respect to the mean image intensities and image
variance,

gim = T~u(gmodel), (5)

whereT~u consists of a shift and scaling of the image intensi-
ties. For further implementation details see [9], [10].

As noted above, a meaningful, dense, groupwise corre-
spondence is required before an appearance model can be
built. NRR provides a natural method of obtaining such a
correspondence, as noted by Frangi and Rueckert [11], [12].
It is this link that forms the basis of our new approach to NRR
evaluation.

The link between registration and modelling is further
exploited in the Minimum Description Length (MDL) [16]
approach to groupwise NRR, where modelling becomes an
integral part of the registration process. This is one of the
registration strategies evaluated in this paper.

III. M ODEL-BASED EVALUATION OF NRR

In the previous section, we described how the results of
NRR can be used to build a generative statistical model of
image appearance. In this section, we present our method for
quantitatively assessing the quality of the model built from the
registered data and, hence, the quality of the NRR from which
the model was derived. We introduce several variants of the
approach, with the aim of finding one which is both robust
and sensitive to small misregistrations.

A. Specificity and Generalisation

A good model of a set of training data should possess
several properties. Firstly, the model should be able to ex-
trapolate and interpolate effectively from the training data, to
produce a range of images from the same general class as
those seen in the training set. We will call thisgeneralisation
ability. Conversely, the model should not produce images
which cannot be considered as valid examples of the class
of image modelled. That is, a model built from brain images
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Fig. 2. The model evaluation framework: A model is constructed from the
training set and used to generate synthetic images. The training set and the
set generated by the model can be viewed as clouds of points in image space
(Ii represented by stars, andIµ represented by dots).

should only generate images which could be considered as
valid images of possible brains. We will call this thespecificity
of the model. In previous work, quantitative measures of
specificity and generalisationwere used to evaluate shape
models [17]. We present here the extension of these ideas to
images (as opposed to shapes). Figure 2 provides an overview
of the approach.

Consider first the training data for the model, that is, the
set of images which were the input to NRR. Without loss of
generality, each training image can be considered as a single
point in ann-dimensional image space. A statistical model is
then a probability density function (pdf)p(z) defined on this
space.

To be specific, let{Ii : i = 1, . . .N} denote theN images
of the training set when considered as points in image space.
Let p(z) be the probability density function of the model. We
define a quantitative measure of thespecificityS of the model
with respect to the training setI = {Ii} as follows:

Sλ(I; p) .=
∫

p(z)mini (|z− Ii|)λ
dz, (6)

where| · | is a distance on image space, raised to some positive
powerλ (for the remainder of this paper we will consider only
the caseλ = 1). That is, for each pointz on image space, we
find the nearest-neighbour to this point in the training set, and
sum the powers of the nearest-neighbour distances, weighted
by the pdf p(z). Greater specificity is indicated bysmaller
values ofS, and vice versa. In Figure 3, we give diagrammatic
examples of models with differing specificity.

The integral in equation 6 can be approximated using a
Monte-Carlo method. A large random set of images{Iµ :
µ = 1, . . .M} is generated, having the same distribution as
the model pdfp(z). The estimate of the specificity (6) is:

Sλ(I; p) ≈ 1
M

M∑
µ=1

mini (|Ii − Iµ|)λ
, (7)

Fig. 3. Training set (points) and model pdf (shading) in image space.Left:
A model which is specific, but not general.Right: A model which is general,
but not specific.

with standard error:

σS =
SDµ

{
mini{|Ii − Iµ|λ}

}
√
M− 1

, (8)

where SDµ is the standard deviation of the set ofµ mea-
surements. Note that this definition ofS does not require
that we construct the space of images, we simply need to
be able to define distances between images. This is discussed
in Section III-B below.

We define a measure of generalisation similarly, simply
reversing the direction of the nearest-neighbour distance mea-
sure:

Gλ(I; p) .=
1
N

N∑
i=1

minµ (|Ii − Iµ|)λ
, (9)

with standard error:

σG =
SDi

{
minµ{|Ii − Iµ|λ}

}
√
N − 1

. (10)

That is, for each member of the training setIi, we compute
the distance to the nearest-neighbour in the sample set{Iµ}.
Large values ofG correspond to model distributions which
do not cover the training set and have poor generalisation
ability, whereas small values ofG indicate models with better
generalisation ability.

We note here that both measures can be further extended,
by considering the sum of distances tok-nearest-neighbours,
rather than just to the single nearest-neighbour. However, the
choice ofk would require careful consideration and in what
follows, we restrict ourselves to the single nearest-neighbour
case.

B. Measuring Image Separation

The definitions we have provided for specificity and gen-
eralisation require a measure of separation in image space.
The most straightforward way to measure the distance between
images is to treat each image as a vector formed by concate-
nating the pixel/voxel intensity values, then take the Euclidean
distance. This means that each pixel/voxel in one image is
compared against its spatially corresponding pixel/voxel in
another image. Although this has the merit of simplicity, it
does not provide a very well-behaved distance measure since
it increases rapidly for quite small image misalignments [18].

Page 4 of 16

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Workflow 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

[DRAFT PLACEHOLDER] TRANSACTIONS ON MEDICAL IMAGING, VOL. 1, NO. 1, NOVEMBER 2006 5

Fig. 4. A comparison between shuffle difference images evaluated using various size neighbourhoods (radiusr). Left: original image,right: warped image,
centre, from the left: shuffle distance withr = 1(Euclidean),1.5, 2.9 and3.7 pixels.

Fig. 5. The calculation of a shuffle difference image

This observation led us to consider an alternative distance
measure, based on the ’shuffle difference’, inspired by the
’shuffle transform’ [19]. If we have two imagesI1(x) and
I2(x), then the shuffle distance between them is defined as

Ds(I1, I2) =
1
n

∑
x

mini‖I1(x)− I2(Ni(x))‖ (11)

where‖ · ‖ is the absolute difference, there aren pixels (or
voxels) indexed byx, and{Ni(x)} is the set of pixels in a
neighbourhood of radiusr aroundx.

The idea is illustrated in Figure 5. Instead of taking the
sum-of-squared-differences between corresponding pixels, the
minimum absolute difference between each pixel in one image
and the values in a neighbourhood around the corresponding
pixel is used. This is less sensitive to small misalignments, and
provides a better-behaved distance measure. The tolerance for
misalignment is dependent on the size of the neighbourhood
(r), as is illustrated in Figure 4.

It should be noted that the shuffle distance as defined above
depends on the direction in which it is measured (see Figure 6),
hence is not a true distance. It is trivial to construct a sym-
metric shuffle distance, by averaging the distance calculated in
both directions between a pair of images. We found, however,
that the improvement obtained was not significant, and did
not justify the increased computation time. In what follows,
we use the asymmetric shuffle distance.

IV. EXPERIMENTAL VALIDATION

We performed two sets of experiments, one designed to
validate our model-based approach for evaluating NRR, the

Fig. 6. Examples of the shuffle difference image: from first to second (left),
from second to first (centre), and the symmetrical shuffle difference image
(right)

other to demonstrate its use in a practical application. In the
first set of experiments our aim was to show that Speci-
ficity and Generalisation are valid measures of the degree
of misregistration of a group of images. We took a set of
registered images for which ground-truth labels were available,
and applied a series of deformations which introduced progres-
sively increasing misregistration. This allowed us to investigate
how our measures of Specificity and Generalisation varied, as
a function of the known misregistration. We also measured
generalised overlap, using the ground-truth labels, to provide
a comparison with an existing method. In the second set of
experiments our aim was to demonstrate that we could usefully
discriminate between different NRR algorithms, by comparing
results for the same dataset.

A. Image Data

To conduct our experiments we used two different sets of
MR images of the brain. The first, which we will refer to
as the ’MGH Dataset’ (see Acknowledgements), was a set
of 2D transaxial mid-brain slices, extracted at an equivalent
level from each of a set of affinely aligned T1-weighted
3D MR scans ofN = 36 normal subjects. As well as the
images themselves, we had access to ground-truth data, in
the form of dense (pixel by pixel) anatomical label maps for
the gray and white matter, the caudate nucleus, and the lateral
ventricles. These labels were further divided into left and right
hemispheres. The anatomical labels were obtained by manual
annotation under conditions of rigorous quality control. An
example image and the corresponding label maps are shown
in Figure 7.

The set of images was non-rigidly registered using a Min-
imum Description Length (MDL) NRR algorithm [16], and
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Fig. 7. An example affinely-aligned brain image and its accompanying
anatomical labels, both overlaid and expanded, for gray matter, white matter,
the lateral ventricles, and the caudate nucleus. The labels are also divided into
left and right.

this registration was used as the starting point for a systematic
evaluation of the effects of misregistration.

The second set of images, which we will refer to as the
’Dementia Dataset’, consisted of a set of 2D transaxial mid-
brain slices, extracted at an equivalent level from each of a
set of affinely aligned T1-weighted 3D MR scans ofN = 104
subjects entered into a clinical study of dementia.

B. Perturbing the Initial Registration

In order to perform a systematic evaluation of the effects of
misregistration, we created multiple image sets, based on the
MGH Dataset, but with controlled degrees of misregistration.
To create a misregistered set, we took the original image set
and applied a set of smooth pseudo-random spatial warps,
based on biharmonic Clamped Plate Splines [20]. The warp for
each image was controlled by 25 randomly placed knot-points,
each displaced in a random direction by a distance drawn from
a Gaussian distribution whose mean controlled the degree of
misregistration introduced. This provided a very general family
of warps. We summarised the degree of misregistration by
measuringd, the average magnitude of pixel displacement over
the whole image. We generated a total of 70 misregistered
image sets – 10 warp-set instantiations for each of 7 different
values ofd (0.0643, 0.249, 0.685, 1.36, 2.21, 2.76, and 4.15
pixels). Examples of warped images are shown in Figure 8.

C. Validation using Warped Images

Given the 70 image sets described above, each with known
average misregistration,d, we investigated the relationship
betweend and Specificity, Generalisation, and Generalised
Overlap, calculating the mean and standard error for each
measure over the 10 warp instances for each value ofd.

For each misregistered image set, we calculated Specificity
and Generalisation, as described in Section III-A, using
m = 15 modes of variation for the model andM = 1000
synthetic images drawn from a Gaussian distribution, as
described in Section II-C. This was repeated for values
of shuffle radius,r, of 1 (Euclidean distance), 1.5, 2.1 and
3.7, as defined in Section III-B, corresponding to circular
neighbourhoods contained within 1x1, 3x3, 5x5 and 7x7 pixel
patches respectively. We also repeated these experiments with
2.5%, 5.0% and 10% Gaussian intensity noise added to the

Fig. 8. An original image from the MGH Dataset (top left) and examples
of warped versions of the same image obtained using different values ofd,
the mean pixel displacement (shown on each image).

misregistered images, in order to investigate the sensitivity of
the model-based measures to image noise.

Similarly, we calculated Generalised Overlap with volume,
equal, inverse volume and complexity weightings, as defined
in Section II-B.2 calculating the mean and standard error for
each measure over the 10 warp instances for each value ofd.

D. Sensitivity

The size of perturbation that can be detected in the val-
idation experiments will depend both on the change in the
values of the measures as a function of misregistration and
the standard error of those values. To quantify this, we define
the sensitivity of a measure as follows.

D(m; d) =
1

σm

(
m(d)−m(0)

d

)
, (12)

wherem(d) is the value of the measure for some degree of
deformationd, σm is the standare error of the estimate of
m(d). D(m; d) = 1 is the change ind required form(d) to
change by one noise standard error, which indicates the lower
limit of change in misregistrationd which can be detected
by the measure.D is a function ofd; to simplify comparison
between different methods of evaluation, we also use the mean
sensitivity over a range of values ofd.

In order to compare the sensitivities of different methods of
evaluation, we need also to estimate the expected error inD.
Since the validation experiments provided repeated estimates
of m(d), we can obtain empirical estimates of the errors in
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m(d), m(0), and σm. These can be combined, using error
propagation, to estimate the uncertainty in the estimate of
sensitivity.

E. Comparing Registration Algorithms

To illustrate the application of model-based evaluation in
practice, we compared the NRR results obtained using three
different methods for registering a group of images, as de-
scribed in more detail below. We wished to establish whether
it was possible, in a practical setting, to detect significant
differences in performance between different NRR algorithms.
All three registration methods used the same piecewise affine
representation of image warps [23] and the same multi-
resolution optimisation framework. The same number of it-
erations (function evaluations) were used in each case.

We applied the three registration algorithms to two datasets.
The MGH Dataset was used because it allowed the evaluation
results obtained using Specificity and Generalisation to be
compared with an evaluation based on the Generalised Overlap
measure (using ground truth). For these experimentsM = 500
synthetic images were used to estimate Specificity and Gen-
eralisation. The Dementia Dataset was used because it was
more representative of a typical clinical study, and we wished
to demonstrate that our results were not dataset-specific. For
these experiments we usedM = 1000 synthetic images.

The three registration methods we used were as follows.
1) Pairwise Registration to a Reference:A commonly used

approach to registering a group of images is to register each
image in the group in turn to a reference image chosen from
the group, using a pairwise objective function (e.g., [12]).
We used this approach as a baseline, with a sum of absolute
intensity differences objective function (which gave slightly
better results than sum of squared differences or mutual
information).

Pairwise approaches to registration can produce reasonable
correspondences, but suffer from the problem that the results
obtained depend on the choice of reference. Refinements of the
basic approach are possible, where the reference is initialised
and updated so as to be representative of the group of images
as a whole. It is important to note, however, that even in
this case the correspondence for a given image is determined
solely by the information in the image and the reference. More
recently, there has been considerable interest ingroupwise
methods which aim to make more systematic use of the
information in the complete set of images when establishing
correspondence. The remaining two methods we tested fall
into this category.

2) Groupwise Congealing Algorithm:Learned-Miller et.
al. [24] originally introduced their ’congealing’ algorithm for
registering a set of hand-written digits. The aim was to avoid
the arbitrary selection of a co-ordinate frame, by repeatedly
registering each image with an evolving ”average” model.
Given the current set of transformed images (initially the
original images), for each pixel position,i, the probability
density function of intensities,v, at that position across the
set of images,pi(v) is estimated. The objective function is
then the sum of entropies of these distributions across the

Fig. 9. Overlap measures (with corresponding± one standard error errorbars)
for the MGH dataset as a function of the degree of degradation of registration
correspondence,d. The various graphs correspond to the various tissue
weightings as defined in Section II-B.

whole image,F =
∑

i

∫
pi(v)logpi(v)dv. A set of image

deformations were optimised to minimise this. In later work
on registering sets of 3D medical images [25], the objective
function was approximated by

∑
j

∑
i logpi(vij), wherevij is

the value of pixeli in deformed imagej. During optimisation,
each image was warped so as to bring pixels with similar
intensities into correspondence across the set. We implemented
this later approach.

3) Groupwise MDL Algorithm: We have previously de-
scribed a groupwise method which uses a Minimum Descrip-
tion Length (MDL)formulation [16]. The main idea is that
the complete set of images can be encrypted as a coded
message, and the description length [22] in bits used as an
objective function. Rather than encoding the raw images, the
encoding uses an appearance model, built using the estimated
correspondences, to approximate the data; the encoding needs
also to include details of the model itself and of the discrep-
ancy between each image and its model approximation. As
the registration proceeds, the correspondences, and hence the
appearance model, are continually updated so as to minimise
the description length.

V. RESULTS

A. Validation using Warped Images

Figure 9 plots each of the four variants of the generalised
overlap measure, as a function ofd, the degree of misregis-
tration. As expected, the value decreases monotonically with
increasing misregistration, in each case. This shows that our
two gold-standard measures of misregistration (mean pixel
displacement and ground-truth overlap) are in agreement,
which validates the experimental framework.

Similarly, Figures 10(a) & 10(b) plot Generalisation and
Specificity as functions ofd, for different values of shuffle
radiusr. The results are qualitatively similar to those obtained
for generalised overlap, except that both measuresincrease
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(a) Generalisation (b) Specificity

Fig. 10. Generalisation & Specificity for various definitions of image distance (varying shuffle radius) with corresponding± one standard error errorbars as
a function of the degree of degradation of the registration correspondenced for the MGH dataset

Fig. 11. Mean sensitivity of different NRR assessment methods over the full
range of deformationsd, shown with±one standard error errorbars

monotonically with increasing misregistration, as expected
(see Section III. These results show that, over the range of
misregistrations investigated, the model-based measures are
good surrogates ford, the mean pixel misregistration. Since
the warps used to introduce controlled misregistration were
of very general form, there is no reason to suppose that this
result is dependent on the pattern of misregistration.

B. Sensitivity

Figure 11 shows the results of applying sensitivity analysis
to the validation study. These demonstrate that Specificity is
more sensitive (is able to detect smaller misregistrations) than
the overlap-based approach, which is in turn more sensitive
than Generalisation. Note from the error bars that these
differences are statistically significant. Maximum sensitivity
is achieved with a shuffle radius of1.5 or 2.1. The most

sensitive generalised overlap measure is obtained using label-
complexity weighting.

C. Effect of Noise

We repeated the validation experiments and sensitivity anal-
ysis reported above with added image noise. Although the
absolute values of the model-based measures were shifted
upwards, as would be expected, there were no changes in the
relative values, nor any systematic or statistically significant
changes in sensitivity, even for 10% added noise.

D. Comparing Registration Algorithms

Figure 13 compares the performance of the three registration
algorithms outlined in Section IV-E. All the measures tested
in the previous section were computed, but we show results
for only the most sensitive model-based method. Figures 13(a)
and (c) show Specificity calculated using a shuffle radius of
2.1, for different values ofm, the number of modes used to
build the generative model. Figure 13(b) shows generalised
overlap using different weightings. The results shown in
Figure 13(a) suggest that the MDL groupwise approach gives
the best registration result for the MGH Dataset, followed by
Pairwise and Congealing in order of decreasing performance
– irrespective of the value ofm. Inspection of the error bars
shows that these differences are statistically significant. The
results for Generalised Overlap, shown in Figure 13(b), are
more complicated, with the performance of the different NRR
algorithms ordered differently for different weightings, though
inspection of the error bars shows that many of the differences
are not significant. Overall, the same general pattern emerges
as for Specificity, with the Groupwise method generally best
(statistically significantly in two cases), but with no significant
difference between Pairwise and Congealing in most cases.
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Fig. 12. The first mode (±2.5 standard deviations) of an appearance model built automatically by group-wise registration.

The results for inverse volume weighting generally lack sig-
nificance, but are inconsistent with those obtained using the
other weighting schemes. Volume weighting gives the best
separation between the different variants, and places the three
methods in the same order as Specificity. Overall, this supports
the interpretation that Specificity give results that are generally
equivalent to those obtained using Generalised Overlap, but
with higher sensitivity. Finally, the Specificity results shown in
Figure 13(c) for the Dementia Dataset, place the three methods
in the same order.

VI. D ISCUSSION

The results of the validation experiment reported in Sec-
tion V-A are the most important outcome of the work presented
here. They demonstrate a causal relationship between our
Specificity and Generalisation measures, and a known (up to
an additive constant) mean pixel displacement,d. A strong
correlation between these model-based measures and a Gen-
eralised Overlap measure, based on ground truth, adds further
weight to this interpretation. The fact that the relationship
with d held good over many different instantiations of a
very general class of perturbing warps, makes it unlikely
(though not impossible) that there is any significant pattern
dependence.

The results obtained with added noise are also encouraging,
since it is a reasonable concern that the use of an intensity-
based distance measure might make the model-based measures
sensitive to noise. In the event, the approach seems robust to
quite significant levels of noise. The fact that the absolute
values of specificity and generalisation change when noise
is added, mean that they would not be useful for comparing
registration results for different image sets. Their ability to
compare the performance of different registration algorithms
applied to the same set of images, the main intended use, is,
however, unaffected.

Our results comparing the performance of different reg-
istration algorithms demonstrate that the model-based mea-
sures, and Specificity in particular, are sufficiently sensitive to
misregistration to provide useful discrimination in a practical
setting. There is, however, a potential concern that it is impor-
tant to address. It might be argued that using a model-based
approach to assessing registration favours methods which use
a model-based objective function for registration (as in the
experiments reported here). In practice, we do not believe that
this is a problem.

First, as we have argued above, our validation results
show that there is a causal relationship between the mean

pixel displacement,d, and Specificity/Generalisation. It is thus
irrelevant how a registration (or misregistration) has been
obtained. Second, the MDL objective function we optimise in
our model-based registration method measures a quite different
property of the model to those we use in evaluation, so there
is no element of ’self-fulfilling prophecy. In an ideal world it
would, of course, be preferable to avoid even the possibility of
bias, though it seems unlikely that one could devise a strategy
for evaluation that had no relevance to achieving a good
registration in the first place. We hope that, in due course, other
ground-truth-free methods of evaluation will be developed,
allowing a multi-perspective assessment of performance.

One obvious limitation of our approach to evaluation is
that it canonly be applied to groups of images. This could
be considered an important restriction, since many practical
applications involve registration of pairs or very short temporal
sequences of images. We would argue that, in fact, this is a
necessary restriction, because it is only possible to arrive at
a meaningful assessment of registration in the context of a
population of images.

The experiments we have reported were performed in 2D
to limit the computational cost of running the large-scale
evaluation for a range of parameter values and with repeated
measurements. The extension to 3D is, however, trivial, though
the calculation of shuffle distance for 3D images increases
the computational cost significantly. We have implemented the
method in 3D and the time taken to evaluate the registration
of 100 190x190x50 images using a shuffle radius of 2.1 and
M = 1000 is around 62.5 hours on a modern PC, which is
short compared to most registration algorithms.

There are a number of issues that merit further investigation.
We have studied a particular method of measuring image
separation, but others, such as local correlation, would be
worth exploring. Another interesting issue is whether it is
possible within this framework to localise registration errors.
We have performed some initial experiments, summing the
shuffle difference maps between all pairs of images in the
registered set. This gives some interesting results, highlighting
areas of common misregistration, but it is not clear what
quantitative interpretation could be placed on such maps.
Finally, it is clear that our current measures of Specificity and
Generalisation are not normalised – their values depend on the
size of the set of registered images, the number of synthetic
images generated and so on. We are currently exploring the
possibility of measuring more fundamental properties of the
relationship between the real and synthetic image distributions,
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Fig. 13. Left and right: Generalisation and Specificity of the three registration methods as a function of the number of modes included in the appearance
model.

with a view to achieving a ’natural’ normalisation.

VII. C ONCLUSIONS

We have described a model-based approach to evaluating
the results of NRR of a group of images. The most important
advantage of the new method is that it does not require any
ground truth, but depends solely on the registered images
themselves.

We have validated the approach by studying the effect
of perturbing, progressively, the registration of an initially
registered set of images, comparing the results with those
obtained using a ’gold standard’ measure based on the overlap
of ground-truth anatomical labels. We have shown that our
new method provides measures of registration accuracy that
are monotonic functions of the known misregistration, and
that one,Specificity, provides a more sensitive measure of
misregistration than the approach based on ground truth.

The model-based approach requires a distance measure in
image space, and we have also demonstrated that the use of
shuffle distance, rather than Euclidean distance, improves the
sensitivity of the approach.

We have further validated the approach, and illustrated
its application, by performing a comparative evaluation of
the results obtained using three different NRR algorithms,
demonstrating the superiority of a fully-groupwise algorithm
over a repeated pairwise approach.

It is important to emphasise that our approach is not
restricted to evaluating model-based NRR algorithms, though
we presented results for one such method; the model-based
measures of registration accuracy can be applied to any set of
non-rigidly registered images, however they were obtained.
We have discussed the possibility of a bias in favour of
model-based methods of registration and conclude that there
is no major problem, though it would be desirable to compare
results obtained using a range of ground-truth-free methods of
evaluation.
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Response to Reviewers 
 

Evaluating Non-Rigid Registration without 
Ground Truth - TMI-2006-0096 

 
We found the reviewer’s comments helpful and thought-provoking.  We hope that in responding we 
have significantly improved the paper.  We felt able to address virtually all the points which were 
raised.  In what follows the review is reproduced in italics, with our comments interspersed. 
 
 
Associate Editor 
The consensus of the reviewers is that the paper presents an interesting and valuable 
contribution. The primary concern raised, that must be addressed in a compelling way in 
preparing a revised version of the manuscript, is the issue of circularity in the assessment. This is 
the concern that the strategy for validation utilizing an AAM objective function finds an AAM 
registration method to be the best. 
 
We accept that this is an important issue, and have addressed it in several ways, including both new 
experiments and revised text, as detailed below. 
 
Reviewer 1 
This paper presents an automatic method to evaluate the quality of elastic registrations without 
using manual segmentation or artificial data. The paper is dealing with a relevant issue since 
there is no real validation of non-linear registrations remains a controversy. The main idea of 
this work consists in transforming the evaluation of the registration into the evaluation of an 
appearance model of the aligned images. The appearance model is based on the variation of 
shape and texture, which are a priori considered as correlated. The quality of the model is 
evaluated regarding its ability to represent all the dataset called the generalisation, and also how 
close the model is from the dataset called the specificity. 
 
A definition of the specificity and generalisation are given, based on the pseudo-distance between 
images called shuffle distance, supposed to be less sensitive to small (radius r) misalignments. A 
first experimental validation is achieved on 2D images which verifies the three measures 
(classical overlap, generalisation, specificity) monotonically increase when the misalignment 
increases. The sensitivity of the 3 measures are also compared. The specificity measure, which 
appears to be the most sensitive measure even before the overlap measure, and far before the 
generalisation measure which appears not very useful. Then the 2 measures of misalignments 
based of the appearance model (specificity and generalisation) are tested on a real dataset of 2D 
images study using one Minimal Description Length registration methods 3 different group 
registration strategies: pairwise, groupwise without and with constrained spatial deformations. 
The specificity of the model derived from the both groupwise registration strategies appears 
significantly better than from the pairwise approach. The generalisation shows no differences 
between strategies. The authors conclude by precising that any registration method can be tested 
with this model. 
 
The paper is clearly written. Figures are useful and understandable. There are lots of different 
ideas and notions discussed. Because of that, the main message is sometimes hidden by 
mathematical equations, and conversely some explanations are not complete enough (texture 
representation, probability density function, measure of generalisation directly introduced in its 
discrete form). 
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The paper has been extensively rewritten from Section IV onwards.  We hope that it is now clearer.  
The texture representation and form of distribution are now explained in Section IIC.  The 
motivation for the definition of Generalisation is expanded Section IIIA. 
 
The authors are talking in the long introduction about the 2 different ways of validating a non-
rigid registration: the measure of overlap of manually segmented regions and the distance of the 
estimated transformation to an artificially applied one. The latter method is not further discussed 
although an artificial dataset is used. Actually, this measure is implicitly represented by the 
deformation factor d. What is validated is thus the consistency of the 3 measures (overlap, 
generalisation, specificity) with this d factor, which can be understood as the distance between 
the resulting registered image and the reference (d=0). This could be mentioned. 
 
This was a helpful comment.  We make the role of the artificially introduced deformation as a gold 
standard clearer throughout the paper, which strengthens the story we can tell about the results of 
the validation experiments. 
 
The distance between images is basically a robust difference of intensities. The normalisation of 
intensities between images might be a critical point for the measure. A more general measure 
could thus be for instance the correlation coefficient between 2 blocks centered on the voxels that 
are compared in each image.  
 
The model can in fact deal with simple (linear) intensity transformations, and this is explained in 
Section IIC.  We agree that other measures such as local correlation could usefully be investigated 
and mention this in the Discussion (Section V1). 
 
The use of "NRR" seems sometimes to mean the actual registration method used (MDL), and 
sometimes it means the registration strategy for a group of images (pairwise, groupwise). Also 
Non Rigid should theoretically be non affine (the images are initially registered using affine 
registration) but this terminology (as well as non-linear) is accepted. 
 
We hope this confusion has been removed. 
 
The conclusion of the article is that the specificity measure proposed is more sensitive than the 
classical overlap measure of manually segmented regions. That does not really mean that the 
proposed measure estimates better the anatomical matching, but rather that it takes into 
consideration the whole image. We can wonder if the method is not sensitive to outliers too, or 
intersubject variabilities outside of the anatomical regions of interest. 
 
We agree with the sentiment in the second sentence.  The question about noise is important.  We 
have now run an additional set of experiments with added noise, described in Sections IVC and VC.  
The results show that the method is relatively insensitive to noise. 
 
The practical scheme used for the registration study is not clear and could be precised: what pdf 
used, is there a MonteCarlo method used, how many random images generated? 
 
The methods section (IV) has been completely rewritten and is hopefully clearer. 
 
A critical point not really discussed in the paper is the number of images necessary to estimate a 
reliable model. Two relatively big datasets with 36 and 104 images are tested. It seems not to be 
applicable to the evaluation of the registration for only 2 images for instance. 
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We now discuss the restriction to groups of images in the Discussion (Section V1). 
 
In conclusion, this paper is interesting and useful to evaluate the accuracy of registration of a 
large group of images, assuming that the computation time for 3D images is not prohibitive. My 
recommandation is acceptation with the revisions suggested. 
 
We mention the time taken for a 3D evaluation in the Discussion (Section VI) 
 
Specific corrections or suggestions: p2: Tanimoto's overlap coefficient: reference ? p3: "c" 
could be called "b" in reference to (2) p3: just before III: This is of one of the... p4: Fig 2: 
precise Ii represented by stars, and Imu represented by dots. p4: name the n-dimensional space 
and precise in the eq (6) p4: pdf stands for probability density function (not defined) p4: why M 
and N (not defined) are different? p5: N=36. Is N the same as p4? p7: Fig 11: which deformation 
coefficient d? 
 
We believe we have dealt with all these detailed points. 
 
Reference that could be mentioned (dual problem of evaluation of segmentations): Warfield SK, 
Zou KH, Wells WM. Simultaneous truth and performance level estimation (STAPLE): an 
algorithm for the validation of image segmentation. IEEE Trans Med Imaging. 2004 
Jul;23(7):903-21. 
 
After some consideration we did not add this reference.  Although the spirit of the STAPLE 
approach was an inspiration for this work, there is no direct similarity to our approach at a technical 
level. 
 
Reviewer 2 
 
This paper introduces a framework for evaluating nonrigid registrations with a ground truth, be 
it based on region overlap or known deformation fields. The technique instead analyzes the 
properties of a generative appearance model, which are demonstrated to be highly correlated 
with a region overlap measure, as well as sensitive to small misregistrations. 
 
The work presented herein is highly original and extremely relevant for the difficult problem of 
validating nonrigid registration methods. Sections I-III are well written, but unfortunately, the 
same cannot be said for the experimental evaluation and discussion part. See details below. I 
have no doubt that, after suitable revisions, this will be an excellent and important paper. 
However, in my opinion it is just not quite there yet. 
 
We accept this as entirely fair comment.  We rushed to make the deadline for the special issue, and 
Sections IV onward did not receive the attention they should have.  Those sections have now been 
completely rewritten and reorganized.  We hope the reviewer will agree that we have now done a 
decent job. 
 
The main flaw with the paper as it is right now is that it fails to address many of the constraints, 
assumptions, and limitations of the proposed method. Let us start with the results that suggest 
groupwise registration performed better than pairwise registration. This may be so, but the 
authors glance over the fact that their groupwise registration method itself uses an appearance 
model as part of its objective function. How is it surprising that an evaluation based on an 
appearance model finds this registration superior? In effect, you are validating a method (read: 
AAM-based registration criterion) against itself. 
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This hints to a fundamental limitation of validation methods, which is only shifted here but not 
resolved: any quality criterion other than the actual ground truth can also be used as a merit 
function to solve the problem that it was designed to evaluate. If this is done, the resulting 
method cannot be validated using this same criterion. In the present paper, this is not only a 
theoretical consideration, but the authors themselves, in my opinion, fell into this trap. 
 
For the paper to be acceptable, I would suggest to either replace the AAM-based groupwise 
registration with a different algorithm, or demonstrate clearly, why the evaluation performed 
here is not a validation of a method against itself. As it is, I find it quite ironic that the authors 
state in Section IV, "the method is not restricted to evaluating model-based NRR algorithms", 
where on the contrary it appears that the method is fundamentally not capable of evaluating 
model-based algorithms. 
 
We agree entirely that we glanced over this.  We have now strengthened the paper in several ways. 
1. In Section VA we take more care to emphasise what we believe can be deduced from the results 

of the validation experiments, in particular that Specificity (and Generalization) is a good 
surrogate for the degree of misregistration, however it arises. 

2. As suggested we have implemented and evaluated another groupwise registration method 
(although plausible, unfortunately it turned out not to be very good!). 

3. We have run the three registration methods on the MGH data as well as the Dementia data.  
This allows us to corroborate the result obtained using Specificity by using the ground truth to 
compute Generalised Overlap. 

4. We now confront this issue directly in the Discussion (Section V1) and present what we hope is 
a persuasive but balanced argument. 

 
We do not claim there is no issue, but believe that we make the case for the value of our approach. 
 
Other issues I would like to see discussed are: can the proposed method localize registration 
errors, like comparison to a known deformation field can, and to some extent the overlap 
criterion can too? Can the method be applied to evaluate a single pairwise registration result? 
The authors rightfully point out that being able to perform in-line evaluations of NRR is an 
important property of their algorithm - yet, by far not every nonrigid registration situation is a 
groupwise problem. Also, how applicable is the proposed framework to situations that are not 
inter-subject registrations, e.g., temporal registrations? 
 
These were helpful pointers to issues we should address.  All these points are now dealt with in the 
Discussion (Section V1). 
 
Another thing that had me wondering is the integration of transformations and textures in the 
appearance model. Only the transformation component is really influenced by the registration, 
whereas the texture is influenced, at least in part, by image noise. I am curious - how does the 
image noise level affect the performance of the proposed evaluation? 
 
We have now run an additional set of experiments with added noise, described in Sections IVC and 
VC.  The results show that the method is relatively insensitive to noise. 
 
Detailed Comments 
 
p. 1, right column, second paragraph - I don't think Ref. [3] is appropriate and relevant here, 
since it deals with point-based (and clearly not nonrigid) registration. 
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p 3, line 30 - "shape-free texture" - please explain briefly how this is obtained. Also, how is the 
"shape-free" property affected by the registration error? 

 
p. 6, Eq (12) and after - how is $\bar\sigma$ computed? The explanation "mean error in the 
estimate of m" really doesn't tell me anything. 

 
p. 6, l. 60 - "the uncertainties" - is this a statistical term? I have never heard of it. Is this 
standard deviations, ranges, certain percentiles? Please be more specific. 

 
p. 7, Fig. 11 - please mention in figure caption what the errors bars represent 
 
We believe that we have addressed all these points. 
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