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Evaluating Non-Rigid Registration without
Ground Truth

Roy S. Schestowitz, Carole J. Twining, Vladimir S. Petéoviimothy F. Cootes, William R. Crum,
and Christopher J. Taylor

Abstract—\We present a generic method for assessing the method of optimising the objective function with respect to the
quality of non-rigid registration (NRR), that does notrequire  deformation fields. As different algorithms generally produce
ground truth, but rather depends solely on the registered images. different results when applied to the same set of images [3],

We consider the case where NRR is applied to aetof images, th . | d f thods t luate th Its of
providing a dense correspondence between images. Given this €re IS a clear need for methods to evaluate the results o

correspondence, it is possible to build a generative statistical NRR.
model of appearance variation for the set. We observe that the ~ Various methods of evaluation have been proposed [4], [6],
quality of the resulting model will depend on the quality of [7]. One approach is to construct artificial test data, applying
the correspondence. We define measures of modspecificityand - ynown deformations to real or synthetic images. This allows
generalisationthat can be used to assess the quality of the model lgorithms to b luated by att ting t th lied
and, hence, the quality of the correspondence from which it is algorn mf°‘ 0 be evaluated by attempling to recover tne applie
derived. The approach does not depend on the specifics of thedeformations, but does not allow the results of NRR to be
registration algorithm or the form of the model. We validate ~assessed 'in-line’ in real applications. An alternative approach
the approach by measuring the change in model quality, as the js to provide anatomical ground truth for the images to be
correspondence of an initially registered set of MR images of the registered, then measure the degree of anatomical correspon-
brain is progressively perturbed, and compare the results with d f ”' ina NRR. We h d h thod in thi
those obtained using a method based on the overlap of ground- LAY ovylng : e, ave used one SUch imetmnod in ,'S
truth anatomical labels. We demonstrate that, not only is the Paper as a 'gold standard’, but the need for expert annotation
proposed approach capable of assessing NRR reliably without of the images renders the approach too time-consuming and
ground truth, but that it also provides a more sensitive measure subjective for routine application. These problems motivate the
of misregistration than the overlap-based approach. Finally we gearch for a method of evaluation that can be used routinely
apply the new method to compare the performance of three in real applications, without the need for ground truth
different registration algorithms on a set of MR images of the pp ' - g : )
brain, demonstrating that the method is able to discriminate ~ The approach we have adopted is based on the observation
between different methods of registration in a practical setting. that, given a set of non-rigidly registered images — however
obtained — it is possible to construct a statistical model of
appearance that takes account of both the shape and texture
l. INTRODUCTION variation across the set. Models of this type have been used
ON-RIGID registration (NRR) of both pairs and groupfgzxtensively.as a basis for image ipterpretation by synthesis [9],
of images is used widely as a basis for medical in{10]. To build a model we expllon the dense corresponder]ce
age analysis. Applications include structural analysis, ati@§r0ss the set of images established by the NRR. The key idea
matching and change analysis [2]. The problem is highffat underpins our approach is that, if the correspondence is
under-constrained and many different algorithms have beRfOr, the resulting appearance model will be unsatisfactory.
proposed. This observation allows us to transform the problem of eval-
The aim of NRR is to find, automatically, a meaningfubating non-rigid registration into one of evaluating the model

dense correspondence between a padirgise registration), 9enerated from the result of registration. . .
or across a group of imagegroupwiseregistration). A typical ~ 1he structure of the paper is as follows. We first provide
algorithm consists of a representation of the deformation fiel@sPrief description of the background to both the assessment
that encode the spatial variation between images, an objecfiferégistration, and the construction of appearance models,
function that quantifies the degree of misregistration, and€¥Plaining in more detail the link between the two. We then
define two quantitative measures of model (and thus registra-
[Draft Placeholder] Manuscript submitted May 26th, 2006 for the TMtion) quality, and discuss their implementation. The behavior

special issue on validation , of these measures is investigated by measuring the effect of
This research was supported by the MIAS IRC project, EPSRC grant

No. GR/N14248/01, UK Medical Research Council Grant No. D2025/3 eliberately perturbing the registration of an initially registered
(“From Medical Images and Signals to Clinical Information”and also by set of images. The results are compared to those obtained using
the 1M p;"je“' EPSRC grant No. GR/S82503/0ln(egrated Brain Image g 'gold standard’ method of assessment, based on measuring
odelling”
W. R. Crum is with the Centre for Medical Image Computing, Departmerﬂ1e overlap of manua”y annotated ground truth. The results
of Computer Science, Gower Street, University College London, Lond@lemonstrate that our new measures are closely correlated with
WCI1E 6BT, United Kingdom. All other authors are with the Division ofthose based on ground-truth, and that the proposed approach

Imaging Science and Biomedical Engineering, University of Manchester, M13 L. . . . .
9PT Manchester, United Kingdom. IS actually more sensitive to misregistration. Finally, we use

Publisher Item Identifier [placeholder]. the measures we have developed to compare three NRR
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algorithms applied to the registration of sets of 2D MR braiannotation of each image — providing an anatomical/tissue
images, demonstrating the superiority of a fully groupwisabel for each voxel — and measures the overlap of corre-
registration algorithm over a repeated pairwise approach. sponding labels following registration, using a generalisation
of Tanimoto’s overlap coefficient [1]. Each label for a given
Il. BACKGROUND image is represented using a binary image but, after warping
A. Non-Rigid Registration and interpolation into a common reference frame, based on
The aim of non-ricid registration is to find an anatom'callthe results of NRR, we obtain a set of fuzzy label images.
meanin If | den '%' g|;< Itl ixl | rlv «el-{0-vOx II ryl'hese are combined in a generalised overlap score [8] which
eaningful, dense (i.e., pixel- O-PIXE! Or VOXEI-10-VO el Cocbrovides a single figure of merit aggregated over all labels and
respondence across a set of images. This corresponden [ : i
! ) A |'images in the set:
typically encoded as a set of spatial deformation fields, one for
each image, such that when the deformations are applied to the
images, corresponding structures are brought into alignment. 22w ) 4MIN(A’€“’BW)
. . . . S pairsk labels:  voxels:
A typical registration algorithm proceeds by optimising O =
some objective function that depends on the similarity of the > > ) _MAX(Akli’ Brui)
) . . . pairsk labelsi  voxels:
images after alignment, with respect to the set of deformations. _ _ _ _ _
As well as the objective function, it is necessary to definghere: indexes voxels in the registered image#dexes the
the representation used for the deformation fields and tlaels andk indexes image pairs (all permutations are con-
method for finding the optimum of the objective functionsidered).Ay;; and By; represent voxel label values for a pair
Different choices lead to different registration results, and th@$ registered images and are in the raf@el]. The MIN()

competing methods of NRR — hence the need for an objecti@&@d M AX () operators are standard results for the intersection

1)

and easily applied method of assessment. and union of fuzzy sets. This generalised overlap measures
the consistency with which each set of labels partitions the
B. Evaluation of NRR image volume. The standard error @ can be estimated in
he normal way from the standard deviation of the pairwise

Two main approaches to assessing the accuracy of N flaps

algorithms have been descrlbed_prev_musly — one based Fhe parametety;, affects the relative weighting of different
the recovery of known deformation fields, the oth.er bas?ngels. Withea; = 1, label contributions are implicitly volume-
on measuring the overlap of ground—truth annotaupns afR‘R/reighted with respect to one another. This means that large
reglstratlop. Both approaches are vaI.|d, but ne@her IS eas_ystt?uctures contribute more to the overall measure. We have also
apply ro_utmely, and both are better swte_zd to off-line eV‘"‘Iuat'oc,[bns:idered the cases whergweights labels by the inverse of
of alg_orlthms: rather t_har_n-lme evaluation of the results of their volume (which makes the relative weighting of different
NRR in practical apphcauon:s. : . labels equal), where; weights labels by the inverse of their

1) Recovery of Deformaﬂon_ F|elqli)ne ob_wous_ way to olume squared (which gives regions of smaller volume higher
test the performance of a registration algorithm is to app eighting), and wherey, weights labels by their complexity,

it to someartificial data vyhere.the correct correspondencg {hich we define as the mean absolute voxel intensity gradient
known. Such test data is typically constructed by applym&/er the labelled region

sets of known deformations (either spatial or textural) to An overlap score based on a generalisation of the popular

real images. This artificially-deformed data is then registere[gice Similarity Coefficient (DSC) would also be possible

and evaluation is based on comparing the deformation fielgﬁt since DSC is related monotonically to the Tanimoto
recovered by the registration algorithm with those that We@oéﬁicient (TC) by DSC = 2TC/(TC+1) [5] we have not
applied originally [6], [7]. This approach can be used tgonsidered this further

compare the performance of different NRR algorithms but,

since it relies on the creation of artificial test data, cannot be o

applied in-line. Also, the validity of the approach depends dn- Statistical Models of Appearance

the ability to construct artificial deformations which mimic Our approach to ground-truth-free evaluation of NRR de-

the variability found in real images of a given type, which ipends on the ability, given a set of registered images, to

difficult to guarantee. construct a generative statistical model of appearance. We have
2) Overlap-Based MethodsAn alternative approach is adopted the approach of Cootes et al [9], [10], who introduced

based on measuring the alignment [4], or overlap [4], [6hodels that capture variation in both shape and texture (in the

of anatomical structures annotated by an expert, or obtaing@phics sense). These have been used extensively in medical

as a result of (semi-)automated segmentation. This has thmage analysis in, for example, brain morphometry and cardiac

disadvantege that manual annotation is expensive to obtiime-series analysis [11]-[13]. Other approaches to appearance

and prone to subjective error, whilst reliable automated amodelling could also be considered as we rely only on the

semi-automated segmentation is extremely difficult to achiegenerative property of such models in this application.

— indeed if it was available it would often obviate the need The key requirement in building an appearance model from
for NRR. a set of images, is the existence of a dense correspondence
We have used an overlap-based approach to provide a 'galttoss the set. This is often defined by interpolating between
standard’ method of assessment. The method requires martbeal correspondences of a limited number of user-defined
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different elements ot for a model built from a set of 2D
MR brain images is shown in Figure 1. The number of modes
(columns) inQ, andQ, is one less than the number of images.
In practice, it is often possible to approximate images well,
using fewer modes.

Generally, we wish to distinguish between the meaningful
shape variation of the objects under consideration, and the
apparent variation in shape that is due to the positioning of
the object within the image (the pose of the imaged object). In
this case, the appearance model is generated from an (affinely)
aligned set of images. Point positions,, in the original
image frame are then obtained by applying the relevant pose
transformationTy(-):

Xim = Tt (Xmodel) (4)

wherex,,.q4e; are the points in the model frame, atidre the
pose parameters. For example, in Zp,could be a similarity
transform with four parameters describing the translation,
rotation and scale of the object.

Fig. 1. The effect of varying the first (top row), second, and third parameter [N @n analogous manner, we can also normalise the image
of a brain appearance model 2.5 standard deviations set with respect to the mean image intensities and image
variance,

" . . 8im = Tﬁ(gmodel)v (5)
landmarks. Shape variation is then represented in terms of the

motions of these sets of landmark points. Using the notation\&hereZ; consists of a shift and scaling of the image intensi-
Cootes et al [9], the shape (configuration of landmark pointé§s. For further implementation details see [9], [10].

of a single example can be represented as a vecformed  As noted above, a meaningful, dense, groupwise corre-
by concatenating the coordinates of the positions of all tis@ondence is required before an appearance model can be
landmark points for that example. The texture is representedilt. NRR provides a natural method of obtaining such a
by a vectorg, formed by concatenating image values (texturé&prrespondence, as noted by Frangi and Rueckert [11], [12].
sampled over a regular grid on thregisteredimage. This Itis this link that forms the basis of our new approach to NRR
means that the a given element gnis sampled from an evaluation.

equivalent point in each image, assuming the registration isThe link between registration and modelling is further
correct. exploited in the Minimum Description Length (MDL) [16]

In the simplest case, we model the variation of shape afgproach to groupwise NRR, where modelling becomes an
texture in terms of multivariate gaussian distributions, usirgtegral part of the registration process. This is one of the
Principal Component Analysis (PCA) [15] to obtain linearegistration strategies evaluated in this paper.
statistical models of the form:

I11. M ODEL-BASED EVALUATION OF NRR

x = X+ Pb; ] ) _
~ 5+Pb 5 In the previous section, we described how the results of
g = BT Lgby @ NRR can be used to build a generative statistical model of

whereb, are shape parametells, are texture parameters, image appearance. In this section, we present our method for
andg are the mean shape and texture, #hdandP,, are the guantitatively assessing the quality of the model built from the
principal modes of shape and texture variation respectivelyregistered data and, hence, the quality of the NRR from which
In generative mode, the input shage.) and texture ,) the model was derived. We introduce several variants of the
parameters can be varied continuously, allowing the generat@pproach, with the aim of finding one which is both robust
of sets of images whose statistical distribution matches that&td sensitive to small misregistrations.
the training set.
In many cases, the variations of shape and texture ae Specificity and Generalisation
correlated. If this correlation is taken into account, we obtain

a combined statistical model of the more general form: A good model of a set of training data should possess

several properties. Firstly, the model should be able to ex-
x = X+ Q¢ trapolate and interpolate effectively from the training data, to
g = E+Que 3) produce a range of images from the same general glass as
those seen in the training set. We will call tlgsneralisation
where the model parametetcontrol both shape and texture ability. Conversely, the model should not produce images
and Q,, Q, are matrices describing the general modes ofhich cannot be considered as valid examples of the class
variation derived from the training set. The effect of varyingf image modelled. That is, a model built from brain images

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901
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N . — Fig. 3. Training set (points) and model pdf (shading) in image spaef.
. ) ‘. M. IF=(Z1”, ,Zm] A model which is specific, but not gener&ight: A model which is general,
' but not specific.

Fig. 2. The model evaluation framework: A model is constructed from the

training set and used to generate synthetic images. The training set andwhth standard error:

set generated by the model can be viewed as clouds of points in image space . N
(I; represented by stars, afig represented by dots). . SD/L {mlni{|1i - I;L\ }}

7 VM—1T ’ ®)

where SD,, is the standard deviation of the set pfmea-
should only generate images which could be considered sifements. Note that this definition & does not require
valid images of possible brains. We will call this thpecificity that we construct the space of images, we simply need to
of the model. In previous work, quantitative measures @k able to define distances between images. This is discussed
specificity and generalisationwere used to evaluate shapen Section I1I-B below.
models [17]. We present here the extension of these ideas tqVe define a measure of generalisation similarly, simply
images (as opposed to shapes). Figure 2 provides an overvievéersing the direction of the nearest-neighbour distance mea-

of the approach. sure: N
Consider first the training data for the model, that is, the .1 . A
set of images which were the input to NRR. Without loss of GA(T;p) = N Z; min,, ([l = L))", ©)

generality, each training image can be considered as a single

point in ann-dimensional image space. A statistical model i&ith standard error:

then a probability density function (pdfy(z) defined on this SD; {min,{|I; - L,|*}}

space. oG = N1 .

To be specific, lefT; : i = 1. N} denote th_eM IMAGES  That s, for each member of the training det we compute

of the training set when considered as points in image spagg, gistance to the nearest-neighbour in the sampléTsgt

Let p(z) be the probability density function of the model. Wg 5146 values ofG correspond to model distributions which

de_zflne a quantitative measure of theecificityS of the model 44 ‘hot cover the training set and have poor generalisation

with respect to the training sét = {I,} as follows: ability, whereas small values @t indicate models with better
generalisation ability.

S\(Z;p) = /p(z)mini (|z — Ii|)A dz, (6) We note here that both measures can be further extended,

by considering the sum of distances #enearest-neighbours,

rather than just to the single nearest-neighbour. However, the

where|-| is a distance on image space, raised to some positMesice of ; would require careful consideration and in what

power) (for the remainder of this paper we will consider only) o5 e restrict ourselves to the single nearest-neighbour
the case\ = 1). That is, for each poinz on image space, we case.

find the nearest-neighbour to this point in the training set, and
sum the powers of the nearest-neighbour distances, Weighéed . .

by the pdfp(z). Greater specificity is indicated bgmaller ~- Measuring Image Separation

values ofS, and vice versa. In Figure 3, we give diagrammatic The definitions we have provided for specificity and gen-

(10)

examples of models with differing specificity. eralisation require a measure of separation in image space.
The integral in equation 6 can be approximated usingTé‘e most straightforward way to measure the distance between
Monte-Carlo method. A large random set of imagds : images is to treat each image as a vector formed by concate-

i =1,...M} is generated, having the same distribution Jaating the pixel/voxel intensity values, then take the Euclidean

the model pdfp(z). The estimate of the specificity (6) is: distance. This means that each pixel/voxel in one image is
compared against its spatially corresponding pixel/voxel in

M another image. Although this has the merit of simplicity, it
: ! ' A d id ll-behaved dist i
S\(Z;p) ~ — Z min; (|I; - 1,))", (7) does not provide a very well-behaved distance measure since

M =1 it increases rapidly for quite small image misalignments [18].
ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901
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Fig. 4. A comparison between shuffle difference images evaluated using various size neighbourhoods)(raglitisoriginal image right: warped image,
centre, from the left: shuffle distance withr = 1(Euclidean),1.5,2.9 and 3.7 pixels.

L(x)
p

min i.| L(x)-L(N, (x))|

min ;| L,(x)- (N, (x))|

Fig. 6. Examples of the shuffle difference image: from first to second (left),
L(x) from second to first (centre), and the symmetrical shuffle difference image
{L(N, ()} (right)

Fig. 5. The calculation of a shuffle difference image
other to demonstrate its use in a practical application. In the
first set of experiments our aim was to show that Speci-
This observation led us to consider an alternative distanieity and Generalisation are valid measures of the degree
measure, based on the ’shuffle difference’, inspired by tleé misregistration of a group of images. We took a set of
'shuffle transform’ [19]. If we have two imageE; (x) and registered images for which ground-truth labels were available,
I,(x), then the shuffle distance between them is defined asind applied a series of deformations which introduced progres-
sively increasing misregistration. This allowed us to investigate

D,(1;,1,) = 1 Z min, ||T; (x) — Io(N;(x))]| (11) how our measures of Specificity and Generalisation varied, as
- a function of the known misregistration. We also measured

where | - || is the absolute difference, there aepixels (or generalise_d over_lap, using t_he ground-truth labels, to provide
voxels) indexed byx, and {N;(x)} is the set of pixels in a & comparison with an existing method. In the second set of
neighbourhood of radiug aroundx. experiments our aim was to demonstrate that we could usefully

The idea is illustrated in Figure 5. Instead of taking th@iscriminate between different NRR algorithms, by comparing
sum-of-squared-differences between corresponding pixels, fggults for the same dataset.
minimum absolute difference between each pixel in one image
and the values in a neighbourhood around the correspondfigimage Data

pixel is used. This is less sensitive to small misalignments, and.l_O conduct our experiments we used two different sets of
provides a better-behaved distance measure. The toleranceM?{ images of the b?ain The first. which we will refer to

m'sa"gf‘””.'e”t IS dep.endlent on the size of the nelghbourhogg the 'MGH Dataset’ (see Acknowledgements), was a set
(r), as is illustrated in Figure 4.

It should be noted that the shuffle distance as defined ab OJeZD transaxial mid-brain slices, extracted at an equivalent

S o . vel from each of a set of affinely aligned T1-weighted
depends on the direction in which it is measured (see Figure .
. ) L MR scans ofA// = 36 normal subjects. As well as the
hence is not a true distance. It is trivial to construct a sym- .
. : . . mages themselves, we had access to ground-truth data, in
metric shuffle distance, by averaging the distance calculate

hé form of dense (pixel by pixel) anatomical label maps for
both directions between a pair of images. We found, however P y P P
that the improvement obtained was not significant, and di

b gray and white matter, the caudate nucleus, and the lateral
A . . . ventricles. These labels were further divided into left and right
not justify the increased computation time. In what followsh . . X
: . emispheres. The anatomical labels were obtained by manual
we use the asymmetric shuffle distance. . - : .
annotation under conditions of rigorous quality control. An
example image and the corresponding label maps are shown
in Figure 7.
We performed two sets of experiments, one designed toThe set of images was non-rigidly registered using a Min-
validate our model-based approach for evaluating NRR, thmmum Description Length (MDL) NRR algorithm [16], and
ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901
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Gray White Lateral Caudate 6.3961
Matter Matter Ventricle Nucleus .

0.6224 0.9654

Fig. 7. An example affinely-aligned brain image and its accompanying
anatomical labels, both overlaid and expanded, for gray matter, white matter,
the lateral ventricles, and the caudate nucleus. The labels are also divided intc

left and right. 1.8083 2.7965 2.8310

this registration was used as the starting point for a systematic
evaluation of the effects of misregistration.

The second set of images, which we will refer to as the
'Dementia Dataset’, consisted of a set of 2D transaxial mid-
brain slices, extracted at an equivalent level from each of a
set of affinely aligned T1-weighted 3D MR scans/df= 104
subjects entered into a clinical study of dementia.

4.9293 7.2558

B. Perturbing the Initial Registration

In order to perform a systematic evaluation of the effects of

misregistration, we created multiple image sets, based on ffi 8 An original image from the MGH Dataset (top leff) and examples
. . . . of Warped versions of the same image obtained using different valués of

MGH Dataset, but with controlled degrees of misregistratioghe mean pixel displacement (shown on each image).
To create a misregistered set, we took the original image set
and applied a set of smooth pseudo-random spatial warps,
based on biharmonic Clamped Plate Splines [20]. The warp foisregistered images, in order to investigate the sensitivity of
each image was controlled by 25 randomly placed knot-pointbge model-based measures to image noise.
each displaced in a random direction by a distance drawn fromSimilarly, we calculated Generalised Overlap with volume,
a Gaussian distribution whose mean controlled the degreeegfual, inverse volume and complexity weightings, as defined
misregistration introduced. This provided a very general family Section 1I-B.2 calculating the mean and standard error for
of warps. We summarised the degree of misregistration bgach measure over the 10 warp instances for each valde of
measuringl, the average magnitude of pixel displacement over
the whole image. We generated a total of 70 misregistered Sensitivity
image sets — 10 warp-set instantiations for each of 7 dlfferent.l.he size of perturbation that can be detected in the val-

"‘?"ules oéd (0'O|643’f0'249’ 3'.685’ 1.36, Z'il’ 2.7_6,F§md 4-18ation experiments will depend both on the change in the
pixels). Examples of warped images are shown in Figure 8\'/alues of the measures as a function of misregistration and

the standard error of those values. To quantify this, we define

C. Validation using Warped Images the sensitivity of a measure as follows.
Given the 70 image sets described above, each with known 1 (m(d) — m(0)
average misregistrationf, we investigated the relationship D(m;d) = — (d)’ (12)
Om

betweend and Specificity, Generalisation, and Generalised
Overlap, calculating the mean and standard error for easherem(d) is the value of the measure for some degree of
measure over the 10 warp instances for each valué of deformationd, o,, is the standare error of the estimate of
For each misregistered image set, we calculated Specificity(d). D(m;d) = 1 is the change inl required form(d) to
and Generalisation, as described in Section 1lI-A, usinghange by one noise standard error, which indicates the lower
m = 15 modes of variation for the model antf = 1000 limit of change in misregistrationl which can be detected
synthetic images drawn from a Gaussian distribution, &y the measureD is a function ofd; to simplify comparison
described in Section [I-C. This was repeated for valudmtween different methods of evaluation, we also use the mean
of shuffle radius,r, of 1 (Euclidean distance), 1.5, 2.1 andensitivity over a range of values df
3.7, as defined in Section 1lI-B, corresponding to circular In order to compare the sensitivities of different methods of
neighbourhoods contained within 1x1, 3x3, 5x5 and 7x7 pixel/aluation, we need also to estimate the expected errdr.in
patches respectively. We also repeated these experiments Bitice the validation experiments provided repeated estimates
2.5%, 5.0% and 10% Gaussian intensity noise added to tfermn(d), we can obtain empirical estimates of the errors in
ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901



Page 7 of 16 Workflow 1

[DRAFT PLACEHOLDER] TRANSACTIONS ON MEDICAL IMAGING, VOL. 1, NO. 1, NOVEMBER 2006 7

m(d), m(0), and o,,,. These can be combined, using erra

propagation, to estimate the uncertainty in the estimate 0.6 W,ﬂghtmg .
g =—Yolume — Inverse
sensitivity. 055 — Equal — Complexity

=1
o

E. Comparing Registration Algorithms

=1
=
o

To illustrate the application of model-based evaluation i
practice, we compared the NRR results obtained using thi
different methods for registering a group of images, as d
scribed in more detail below. We wished to establish wheth
it was possible, in a practical setting, to detect significa
differences in performance between different NRR algorithm nesr
All three registration methods used the same piecewise aff 0zl
representation of image warps [23] and the same mul
resolution optimisation framework. The same number of i
erations (function evaluations) were used in each case. Degree of misregistration (mean pixel displacement)

We applied the three registration algorithms to two datasets.

The MGH Dataset was used because it allowed the evaluatlﬂ@lﬂ?- h%zrlgptmeitsurei(wit? corrftshpogdiﬁﬂ@ne ?tgndarg ?_rror efrrorbetrS)t_
; ; PP P e ataset as a function of the degree of degradation of registration
results obtained using Specificity and Generalisation to boérespondenced. The various graphs correspond to the various tissue

compared with an evaluation based on the Generalised OvefRlaghtings as defined in Section II-B.

measure (using ground truth). For these experimarts 500

synthetic images were used to estimate Specificity and Gen-

eralisation. The Dementia Dataset was used because it wdwle image,F = ). [ pi(v)logp;(v)dv. A set of image
more representative of a typical clinical study, and we wishetkformations were optimised to minimise this. In later work
to demonstrate that our results were not dataset-specific. Barregistering sets of 3D medical images [25], the objective
these experiments we uséd = 1000 synthetic images. function was approximated @j >~ logpi(vi;), wherev;; is

The three registration methods we used were as followsthe value of pixel in deformed imagg. During optimisation,

1) Pairwise Registration to a ReferencA:commonly used each image was warped so as to bring pixels with similar
approach to registering a group of images is to register edokensities into correspondence across the set. We implemented
image in the group in turn to a reference image chosen frdhis later approach.
the group, using a pairwise objective function (e.g., [12]). 3) Groupwise MDL Algorithm: We have previously de-

We used this approach as a baseline, with a sum of absolsttibed a groupwise method which uses a Minimum Descrip-
intensity differences objective function (which gave slightlyion Length (MDL)formulation [16]. The main idea is that

better results than sum of squared differences or mutdhé complete set of images can be encrypted as a coded
information). message, and the description length [22] in bits used as an

Pairwise approaches to registration can produce reasonai#ective function. Rather than encoding the raw images, the
correspondences, but suffer from the problem that the resigtscoding uses an appearance model, built using the estimated
obtained depend on the choice of reference. Refinements of tlerespondences, to approximate the data; the encoding needs
basic approach are possible, where the reference is initialisgglo to include details of the model itself and of the discrep-
and updated so as to be representative of the group of imagesy between each image and its model approximation. As
as a whole. It is important to note, however, that even the registration proceeds, the correspondences, and hence the
this case the correspondence for a given image is determiggypearance model, are continually updated so as to minimise
solely by the information in the image and the reference. Motke description length.
recently, there has been considerable interesgroupwise
methods which aim to make more systematic use of the V. RESULTS
information in the complete set of images when establishing
correspondence. The remaining two methods we tested fail
into this category. Figure 9 plots each of the four variants of the generalised

2) Groupwise Congealing Algorithmiearned-Miller et. overlap measure, as a function &f the degree of misregis-
al. [24] originally introduced their 'congealing’ algorithm fortration. As expected, the value decreases monotonically with
registering a set of hand-written digits. The aim was to avoidcreasing misregistration, in each case. This shows that our
the arbitrary selection of a co-ordinate frame, by repeatediyo gold-standard measures of misregistration (mean pixel
registering each image with an evolving "average” modedlisplacement and ground-truth overlap) are in agreement,
Given the current set of transformed images (initially thehich validates the experimental framework.
original images), for each pixel position, the probability = Similarly, Figures 10(a) & 10(b) plot Generalisation and
density function of intensitiesy, at that position across theSpecificity as functions ofi, for different values of shuffle
set of imagesp;(v) is estimated. The objective function isradiusr. The results are qualitatively similar to those obtained
then the sum of entropies of these distributions across ttee generalised overlap, except that both measimesease
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Fig. 10. Generalisation & Specificity for various definitions of image distance (varying shuffle radius) with correspbnaiiregstandard error errorbars as
a function of the degree of degradation of the registration correspondefwethe MGH dataset

Sensitivity e . . . .
S 5 o 8 o8 8 8 8 &8 &= sensitive generalised overlap measure is obtained using label-
;_? Shuffle distance radius 1 CompIeXity Welghtlng
g Shuffle distance radius 15
% | Shuffle distance radius 2.1 C. Effect of Noise

| Shuffle distance radius 3.7

We repeated the validation experiments and sensitivity anal-
ysis reported above with added image noise. Although the
absolute values of the model-based measures were shifted
upwards, as would be expected, there were no changes in the
relative values, nor any systematic or statistically significant

Volume weighted
Equally weighted

Inverse weighted

OJOLIUE |,

| Label complexity weighted

: = Sl DL SR changes in sensitivity, even for 10% added noise.
E I— Shufflz distance radius 1.5
5 | Shuffle distance radius 2.1

D. Comparing Registration Algorithms

Figure 13 compares the performance of the three registration

Fig. 11. Mean sensitivity of different NRR assessment methods over the fallgorithms outlined in Section IV-E. All the measures tested
range of deformationd, shown with+one standard error errorbars in the previous section were Computed but we show results
for only the most sensitive model-based method. Figures 13(a)

. L . . . . and (c) show Specificity calculated using a shuffle radius of
monotonically with increasing misregistration, as expect

: il for different values ofn, the number of modes used to
(see Section Il These results show that, over the range blild the generative model. Figure 13(b) shows generalised
misregistrations investigated, the model-based measures are 9 - 9 9

. . . . . overlap using different weightings. The results shown in
good surrogates fod, the mean pixel misregistration. Smce’:i ure 13(a) suggest that the MDL groupwise approach gives
the warps used to introduce controlled misregistration w & 99 group PP g

. e{he best registration result for the MGH Dataset, followed by
of very general form, there is no reason to suppose that tflys. ; T :
4 . . . airwise and Congealing in order of decreasing performance
result is dependent on the pattern of misregistration. : . )
— irrespective of the value ofi. Inspection of the error bars
o shows that these differences are statistically significant. The
B. Sensitivity results for Generalised Overlap, shown in Figure 13(b), are
Figure 11 shows the results of applying sensitivity analysimore complicated, with the performance of the different NRR
to the validation study. These demonstrate that Specificity atgorithms ordered differently for different weightings, though
more sensitive (is able to detect smaller misregistrations) thispection of the error bars shows that many of the differences
the overlap-based approach, which is in turn more sensitigee not significant. Overall, the same general pattern emerges
than Generalisation. Note from the error bars that theas for Specificity, with the Groupwise method generally best
differences are statistically significant. Maximum sensitivitystatistically significantly in two cases), but with no significant
is achieved with a shuffle radius df5 or 2.1. The most difference between Pairwise and Congealing in most cases.
ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901
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Fig. 12. The first mode#2.5 standard deviations) of an appearance model built automatically by group-wise registration.

The results for inverse volume weighting generally lack sigixel displacementd, and Specificity/Generalisation. It is thus
nificance, but are inconsistent with those obtained using theelevant how a registration (or misregistration) has been
other weighting schemes. Volume weighting gives the besbtained. Second, the MDL objective function we optimise in
separation between the different variants, and places the thoee model-based registration method measures a quite different
methods in the same order as Specificity. Overall, this suppapt®perty of the model to those we use in evaluation, so there
the interpretation that Specificity give results that are generai/no element of 'self-fulfilling prophecy. In an ideal world it
equivalent to those obtained using Generalised Overlap, duld, of course, be preferable to avoid even the possibility of
with higher sensitivity. Finally, the Specificity results shown itbias, though it seems unlikely that one could devise a strategy
Figure 13(c) for the Dementia Dataset, place the three methdds evaluation that had no relevance to achieving a good
in the same order. registration in the first place. We hope that, in due course, other

ground-truth-free methods of evaluation will be developed,

VI. DisCUsSION allowing a multi-perspective assessment of performance.

The results of the validation experiment reported in Sec- 5ne opvious limitation of our approach to evaluation is
tion V-A are the most important outcome o_f the \{vork presenteft it canonly be applied to groups of images. This could
here. They demonstrate a causal relationship between BUrcqnsigered an important restriction, since many practical
Specificity and Generalisation measures, and a known (UpdQyjications involve registration of pairs or very short temporal
an additive constant) mean pixel displacementA strong  sequences of images. We would argue that, in fact, this is a
correlation between these model-based measures and a GRRassary restriction, because it is only possible to arrive at

eralised Overlap measure, based on ground truth, adds furthefeaningful assessment of registration in the context of a
weight to this interpretation. The fact that the relat'onSh'Bopulation of images.

with d held good over many different instantiations of a
very general class of perturbing warps, makes it unlikel})é

(though not impossible) that there is any significant patte i ,
dependence. evaluation for a range of parameter values and with repeated

The results obtained with added noise are also encouragiff@surements. The extension to 3D is, however, trivial, though
since it is a reasonable concern that the use of an intensify¢ calculation of shuffle distance for 3D images increases
based distance measure might make the model-based meadfife§omputational cost significantly. We have implemented the

sensitive to noise. In the event, the approach seems robustgfnod in 3D and the time taken to evaluate the registration
quite significant levels of noise. The fact that the absoluff 100 190x190x50 images using a shuffle radius of 2.1 and

values of specificity and generalisation change when noidd = 1000 is around 62.5 hours on a modern PC, which is

is added, mean that they would not be useful for comparisg©'t compared to most registration algorithms.
registration results for different image sets. Their ability to There are a number of issues that merit further investigation.
compare the performance of different registration algorithnWe have studied a particular method of measuring image
applied to the same set of images, the main intended use s®paration, but others, such as local correlation, would be
however, unaffected. worth exploring. Another interesting issue is whether it is
Our results comparing the performance of different regrossible within this framework to localise registration errors.
istration algorithms demonstrate that the model-based m&de have performed some initial experiments, summing the
sures, and Specificity in particular, are sufficiently sensitive ghuffle difference maps between all pairs of images in the
misregistration to provide useful discrimination in a practicakgistered set. This gives some interesting results, highlighting
setting. There is, however, a potential concern that it is impareas of common misregistration, but it is not clear what
tant to address. It might be argued that using a model-baspantitative interpretation could be placed on such maps.
approach to assessing registration favours methods which &gsally, it is clear that our current measures of Specificity and
a model-based objective function for registration (as in tHéeneralisation are not normalised — their values depend on the
experiments reported here). In practice, we do not believe tisite of the set of registered images, the number of synthetic
this is a problem. images generated and so on. We are currently exploring the
First, as we have argued above, our validation resuftessibility of measuring more fundamental properties of the
show that there is a causal relationship between the meaetationship between the real and synthetic image distributions,
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Fig. 13. Left and right: Generalisation and Specificity of the three registration methods as a function of the number of modes included in the appearance

model.
with a view to achieving a 'natural’ normalisation. provided by Prof. Alan Jackson, University of Manchester. We
also acknowledge the interesting and constructive comments
VIl. CONCLUSIONS of the referees, which have helped us improve the paper.

We have described a model-based approach to evaluating
the results of NRR of a group of images. The most important
advantage of the new method is that it does not require ar{g/] M. Beauchemin and K. P. B. Thomson, “The evaluation of segmentation

. . results and the overlapping area matrixternational Journal of Remote
ground truth, but depends solely on the registered images Sensing 18(18):3895-3899, 1997.

themselves. [2] W. R. Crum, T Hartkens and D. L. G. Hill, “Non-rigid image regis-
We have validated the approach by studying the effect tration: theory and practicePritish Journal of Radiologyvol. 77, pp.

X . . . . .. 140-153, 2004.
of perturbing, progressively, the registration of an initially 3] B. Zitova and J. Flusser, “Image registration methods: A surveydge

registered set of images, comparing the results with those and vision Computingvol. 21, pp. 977 — 1000, 2003.
obtained using a 'gold standard’ measure based on the overlkp P. Hellier, C. Barillot, I. Corouge, B. Giraud, G. L. Goualher, L. Collins,

. A. Evans, G. Malandain, and N. Ayache, “Retrospective evaluation of
of ground-truth anatomical labels. We have shown that our inter-subject brain registration,” iRroceedings of Medical Image Com-

new method provides measures of registration accuracy that puting and Computer-Assisted Intervention (MICCAI), Lecture Notes in
are monotonic functions of the known misregistration, and = Computer Sciencevol. 2208. Springer, 2001, pp. 258-265.

e ; " ] D.W. Shattuck, S.R. Sandor-Leahy, K.A. Schaper, D.A. Rottenberg and
that one,SpeC|f|C|ty prowdes a more sensitive measure 0 R.M. Leahy, “Magnetic resonance image tissue classification using a

misregistration than the approach based on ground truth. partial volume modelNeurolmagevol. 13, pp. 856—876, 2001.
The model-based approach requires a distance measurelfh P- Rogelj, S. Kovacic, and J. C. Gee, “Validation of a nonrigid registra-

. tion algorithm for multimodal data,” ifProceedings of Medical Imaging
image space, and we have also demonstrated that the use of2002’ Image Processing, SPIE Proceedings. 4684, 2002, pp. 299—

shuffle distance, rather than Euclidean distance, improves the 307.
sensitivity of the approach. [7] J. A. Schnabel, C. Tanner, A. Castellano-Smith, A. Degenhard, M. O.
We have further validated the approach, and illustrated Leach, D.R. Hose, D. L. G. Hill, and D. J. Hawkes, “Validation of non-

. . - . : rigid registration using finite element methods: Application to breast MR
its application, by performing a comparative evaluation of images.” in IEEE Transactions on Medical Imaging, vol. 22(2):238-247,

the results obtained using three different NRR algorithms, 2003

. L . . [B] W. R. Crum, O. Camara, D. Rueckert, K. Bhatia, M. Jenkinson, and
demonstratlng the superiority of a fUIly'grOUpW|Se algorlthm D. L. G. Hill., “Generalised overlap measures for assessment of pairwise

over a repeated pairwise approach. and groupwise image registration and segmentationPraceedings of
It is important to emphasise that our approach is not Medical Image Computing and Computer-Assisted Intervention (MIC-

restricted to evaluating model-based NRR algorithms, though g:'gg';‘elcgg_re Notes in Computer Scieneel. 3749.  Springer, 2005,

we presented results for one such method; the model-baspy T. Cootes, G. Edwards, and C. Taylor, “Active appearance models,” in
measures of registration accuracy can be applied to any set of Proceedings of the European Conference on Computer Vision (ECCV),

non-rigidly registered images, however they were obtained. ";gzt_“‘{gg'.\mtes in Computer Scienoel. 1407.  Springer, 1998, pp.

We have discussed the possibility of a bias in favour @fo] G. J. Edwards, T. F. Cootes, and C. J. Taylor, “Face recognition using
model-based methods of registration and conclude that there active appearance models,” Rrroceedings of European Conference on

is no major problem, though it would be desirable to compare lggrgptgs_r g’ésl'ggélgécwre Notes in Computer Scierog 2. Springer,

results obtained using a range of ground-truth-free methods{off A. F. Frangi, D. Rueckert, J. A. Schnabel, and W. J. Niessen, “Automatic
evaluation. construction of multiple-object three-dimensional statistical shape mod-
els: application to cardiac modellingEEE Trans. Med. Imagvol. 21,
pp. 1151-1166, 2002.
ACKNOWLEDGEMENT [12] D. Rueckert, A. F. Frangi, and J. A. Schnabel, “Automatic construc-
tion of 3-d statistical deformation models of the brain using nonrigid
The authors would like to thank David Kennedy of the registration,”IEEE Trans. Med. Imag.vol. 22, no. 8, pp. 1014-1025,
Center for Morphometric Analysis at MGH, for providing _ 2003. ,
. . . rH.3] M. B. Stegmann, B. K. Ersboll, and R. Larsen, “FAME - a flexible
the fully-annotated bra_-'n Images. _Add't'onal images  fro appearance modeling environmen€EE Trans. Med. Imag.vol. 22,
age-matched normals in a dementia study were generously no. 10, pp. 1319-1331, 2003.
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Response to Reviewers

Evaluating Non-Rigid Registration without
Ground Truth - TMI-2006-0096

We found the reviewer’s comments helpful and thought-provoking. We hope that in responding we
have significantly improved the paper. We felt able to address virtually all the points which were
raised. In what follows the review is reproduced in italics, with our comments interspersed.

Associate Editor

The consensus of the reviewers is that the paper presents an interesting and valuable
contribution. The primary concern raised, that must be addressed in a compelling way in
preparing a revised version of the manuscript, is the issue of circularity in the assessment. This is
the concern that the strategy for validation utilizing an AAM objective function finds an AAM
registration method to be the best.

We accept that this is an important issue, and have addressed it in several ways, including both new
experiments and revised text, as detailed below.

Reviewer 1

This paper presents an automatic method to evaluate the quality of elastic registrations without
using manual segmentation or artificial data. The paper is dealing with a relevant issue since
there is no real validation of non-linear registrations remains a controversy. The main idea of
this work consists in transforming the evaluation of the registration into the evaluation of an
appearance model of the aligned images. The appearance model is based on the variation of
shape and texture, which are a priori considered as correlated. The quality of the model is
evaluated regarding its ability to represent all the dataset called the generalisation, and also how
close the model is from the dataset called the specificity.

A definition of the specificity and generalisation are given, based on the pseudo-distance between
images called shuffle distance, supposed to be less sensitive to small (radius r) misalignments. A
first experimental validation is achieved on 2D images which verifies the three measures
(classical overlap, generalisation, specificity) monotonically increase when the misalignment
increases. The sensitivity of the 3 measures are also compared. The specificity measure, which
appears to be the most sensitive measure even before the overlap measure, and far before the
generalisation measure which appears not very useful. Then the 2 measures of misalignments
based of the appearance model (specificity and generalisation) are tested on a real dataset of 2D
images study using one Minimal Description Length registration methods 3 different group
registration strategies: pairwise, groupwise without and with constrained spatial deformations.
The specificity of the model derived from the both groupwise registration strategies appears
significantly better than from the pairwise approach. The generalisation shows no differences
between strategies. The authors conclude by precising that any registration method can be tested
with this model.

The paper is clearly written. Figures are useful and understandable. There are lots of different
ideas and notions discussed. Because of that, the main message is sometimes hidden by
mathematical equations, and conversely some explanations are not complete enough (texture
representation, probability density function, measure of generalisation directly introduced in its
discrete form).
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The paper has been extensively rewritten from Section IV onwards. We hope that it is now clearer.
The texture representation and form of distribution are now explained in Section IIC. The
motivation for the definition of Generalisation is expanded Section I11A.

The authors are talking in the long introduction about the 2 different ways of validating a non-
rigid registration: the measure of overlap of manually segmented regions and the distance of the
estimated transformation to an artificially applied one. The latter method is not further discussed
although an artificial dataset is used. Actually, this measure is implicitly represented by the
deformation factor d. What is validated is thus the consistency of the 3 measures (overlap,
generalisation, specificity) with this d factor, which can be understood as the distance between
the resulting registered image and the reference (d=0). This could be mentioned.

This was a helpful comment. We make the role of the artificially introduced deformation as a gold
standard clearer throughout the paper, which strengthens the story we can tell about the results of
the validation experiments.

The distance between images is basically a robust difference of intensities. The normalisation of
intensities between images might be a critical point for the measure. A more general measure
could thus be for instance the correlation coefficient between 2 blocks centered on the voxels that
are compared in each image.

The model can in fact deal with simple (linear) intensity transformations, and this is explained in
Section I1C. We agree that other measures such as local correlation could usefully be investigated
and mention this in the Discussion (Section V1).

The use of "NRR" seems sometimes to mean the actual registration method used (MDL), and
sometimes it means the registration strategy for a group of images (pairwise, groupwise). Also
Non Rigid should theoretically be non affine (the images are initially registered using affine
registration) but this terminology (as well as non-linear) is accepted.

We hope this confusion has been removed.

The conclusion of the article is that the specificity measure proposed is more sensitive than the
classical overlap measure of manually segmented regions. That does not really mean that the
proposed measure estimates better the anatomical matching, but rather that it takes into
consideration the whole image. We can wonder if the method is not sensitive to outliers too, or
intersubject variabilities outside of the anatomical regions of interest.

We agree with the sentiment in the second sentence. The question about noise is important. We
have now run an additional set of experiments with added noise, described in Sections IVC and VC.
The results show that the method is relatively insensitive to noise.

The practical scheme used for the registration study is not clear and could be precised: what pdf
used, is there a MonteCarlo method used, how many random images generated?

The methods section (IV) has been completely rewritten and is hopefully clearer.
A critical point not really discussed in the paper is the number of images necessary to estimate a

reliable model. Two relatively big datasets with 36 and 104 images are tested. It seems not to be
applicable to the evaluation of the registration for only 2 images for instance.
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We now discuss the restriction to groups of images in the Discussion (Section V1).

In conclusion, this paper is interesting and useful to evaluate the accuracy of registration of a
large group of images, assuming that the computation time for 3D images is not prohibitive. My
recommandation is acceptation with the revisions suggested.

We mention the time taken for a 3D evaluation in the Discussion (Section VI)

Specific corrections or suggestions: p2: Tanimoto's overlap coefficient: reference ? p3: *'c"
could be called ""b™ in reference to (2) p3: just before Il11: This is of one of the... p4: Fig 2:
precise li represented by stars, and Imu represented by dots. p4: name the n-dimensional space
and precise in the eq (6) p4: pdf stands for probability density function (not defined) p4: why M
and N (not defined) are different? p5: N=36. Is N the same as p4? p7: Fig 11: which deformation
coefficient d?

We believe we have dealt with all these detailed points.

Reference that could be mentioned (dual problem of evaluation of segmentations): Warfield SK,
Zou KH, Wells WM. Simultaneous truth and performance level estimation (STAPLE): an
algorithm for the validation of image segmentation. IEEE Trans Med Imaging. 2004
Jul;23(7):903-21.

After some consideration we did not add this reference. Although the spirit of the STAPLE
approach was an inspiration for this work, there is no direct similarity to our approach at a technical
level.

Reviewer 2

This paper introduces a framework for evaluating nonrigid registrations with a ground truth, be
it based on region overlap or known deformation fields. The technique instead analyzes the
properties of a generative appearance model, which are demonstrated to be highly correlated
with a region overlap measure, as well as sensitive to small misregistrations.

The work presented herein is highly original and extremely relevant for the difficult problem of
validating nonrigid registration methods. Sections I-111 are well written, but unfortunately, the
same cannot be said for the experimental evaluation and discussion part. See details below. |
have no doubt that, after suitable revisions, this will be an excellent and important paper.
However, in my opinion it is just not quite there yet.

We accept this as entirely fair comment. We rushed to make the deadline for the special issue, and
Sections IV onward did not receive the attention they should have. Those sections have now been
completely rewritten and reorganized. We hope the reviewer will agree that we have now done a
decent job.

The main flaw with the paper as it is right now is that it fails to address many of the constraints,
assumptions, and limitations of the proposed method. Let us start with the results that suggest
groupwise registration performed better than pairwise registration. This may be so, but the
authors glance over the fact that their groupwise registration method itself uses an appearance
model as part of its objective function. How is it surprising that an evaluation based on an
appearance model finds this registration superior? In effect, you are validating a method (read:
AAM-based registration criterion) against itself.
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This hints to a fundamental limitation of validation methods, which is only shifted here but not
resolved: any quality criterion other than the actual ground truth can also be used as a merit
function to solve the problem that it was designed to evaluate. If this is done, the resulting
method cannot be validated using this same criterion. In the present paper, this is not only a
theoretical consideration, but the authors themselves, in my opinion, fell into this trap.

For the paper to be acceptable, I would suggest to either replace the AAM-based groupwise
registration with a different algorithm, or demonstrate clearly, why the evaluation performed
here is not a validation of a method against itself. As it is, | find it quite ironic that the authors
state in Section IV, ""the method is not restricted to evaluating model-based NRR algorithms",
where on the contrary it appears that the method is fundamentally not capable of evaluating
model-based algorithms.

We agree entirely that we glanced over this. We have now strengthened the paper in several ways.

1. In Section VA we take more care to emphasise what we believe can be deduced from the results
of the validation experiments, in particular that Specificity (and Generalization) is a good
surrogate for the degree of misregistration, however it arises.

2. As suggested we have implemented and evaluated another groupwise registration method
(although plausible, unfortunately it turned out not to be very good!).

3. We have run the three registration methods on the MGH data as well as the Dementia data.
This allows us to corroborate the result obtained using Specificity by using the ground truth to
compute Generalised Overlap.

4. We now confront this issue directly in the Discussion (Section V1) and present what we hope is
a persuasive but balanced argument.

We do not claim there is no issue, but believe that we make the case for the value of our approach.

Other issues 1 would like to see discussed are: can the proposed method localize registration
errors, like comparison to a known deformation field can, and to some extent the overlap
criterion can too? Can the method be applied to evaluate a single pairwise registration result?
The authors rightfully point out that being able to perform in-line evaluations of NRR is an
important property of their algorithm - yet, by far not every nonrigid registration situation is a
groupwise problem. Also, how applicable is the proposed framework to situations that are not
inter-subject registrations, e.g., temporal registrations?

These were helpful pointers to issues we should address. All these points are now dealt with in the
Discussion (Section V1).

Another thing that had me wondering is the integration of transformations and textures in the
appearance model. Only the transformation component is really influenced by the registration,
whereas the texture is influenced, at least in part, by image noise. I am curious - how does the
image noise level affect the performance of the proposed evaluation?

We have now run an additional set of experiments with added noise, described in Sections 1VC and
VC. The results show that the method is relatively insensitive to noise.

Detailed Comments

p. 1, right column, second paragraph - | don’t think Ref. [3] is appropriate and relevant here,
since it deals with point-based (and clearly not nonrigid) registration.
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p 3, line 30 - "'shape-free texture™ - please explain briefly how this is obtained. Also, how is the
""'shape-free™ property affected by the registration error?

p. 6, Eq (12) and after - how is $\bar\sigma$ computed? The explanation "'mean error in the
estimate of m'* really doesn't tell me anything.

p. 6, . 60 - "the uncertainties™ - is this a statistical term? | have never heard of it. Is this
standard deviations, ranges, certain percentiles? Please be more specific.

p. 7, Fig. 11 - please mention in figure caption what the errors bars represent

We believe that we have addressed all these points.

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901



