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Non-rigid registration (NRR) of both pairs and groups of images has in recent years increasingly been
used as a basis for medical image analysis. The problem is highly under-constrained and a host of algo-
rithms that have become available will, given a set of images to be registered, in general produce different
results. We present two methods for assessing the performance of non-rigid registration algorithms. One
of the methods requires ground truth to be provideda priori, whereas the other does not. We compare both
methods on a registration of a set of 38 MR brain images and show them to provide a robust evaluation
of registration success. Moreover, we demonstrate that both methods are in fact closely correlated if not
interchangeable.

The first of the proposed methods assesses registration as the spatial overlap, defined using Tani-
moto’s formulation of corresponding regions in the registered images. The correspondence is defined by
labels of distinct image regions (in this case brain tissue classes), produced by manual mark-up of the
original images (ground-truth labels). A correctly registered image set will exhibit high relative overlap
between corresponding brain structures in different images and, in the opposite case, low overlap with
non-corresponding structures. A generalised overlap measure [1] is used to compute a single figure of
merit for the overall overlap of all labels over all subjects.
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wherei indexes voxels in the registered images,l indexes the label andk indexes the two images
under consideration.Akli andBkli represent voxel label values in a pair of registered images and are in
the range [0, 1]. TheMIN() andMAX() operators are standard results for the intersection and union
of a fuzzy set. This generalised overlap measures the consistency with which each set of labels partitions
the image volume. The parameterαl affects the relative weighting of different labels. Withαl = 1,
label contributions are implicitly volume weighted with respect to one another. We have also considered
the cases whereαl weights for the inverse label volume (which makes the relative weighting of different
labels equal), whereαl weights for the inverse label volume squared (which gives labels of smaller volume
higher weighting) and whereαl weights for a measure of label complexity (which we define arbitrarily as
the mean absolute voxel intensity gradient in the label).

The second method assesses registration as the quality of a generative, statistical appearance model,
constructed from registered images. The idea is that a correct registration produces a true dense correspon-
dence between the images, resulting in a better statistical appearance model of the images. Registration is
then evaluated through specificity and generalisation ability [17] of the model, or the ability of the model to
i) generate realistic examples of the modelled entity and ii) represent well both seen and unseen examples
of the modelled class. In practice these are evaluated by using generative properties of the model to produce
a large number of synthetic examples (in this case brain images) that are then compared to real examples in
the original set using some pre-defined image distance measure. Minimum distances of synthetic examples
to examples in the original set and vice versa, give model specificity and generalisation respectively. Image
distance is measured as a mean shuffle distance, or minimum Euclidean distance between a pixel in one
image and a corresponding neighbourhood of pixels in the other.

To test the validity of the proposed methods, the brain images were annotated with 6 tissue classes
including gray, white matter and CSF that provided the ground truth for image correspondence. Initially,
the images were brought into alignment using an NRR algorithm based on the MDL optimisation. A
test set of different registrations was then created by applying random perturbations to each image in
the registered set using diffeomorphic clamped-plate splines. By choosing a different perturbation seed
for each image and gradually increasing the magnitude of the perturbations, a series of image sets of
progressively worse spatial correspondence and thus registration quality were obtained. By measuring the
quality of the registration at each step, the proposed registration assessment measures can be validated.

Overall, the above approach was applied 10 times using 10 different perturbation seeds to ensure that
both methods are consistent and results unbiased. Results of the proposed measures for increasing regis-



tration perturbation are shown in Figure 1. Note that Generalisation and Specificity plotted for different
shuffle neighbourhood radius are in error form, i.e. they increase with decreasing performance. All metrics
are generally well-behaved and show a monotonic decrease in registration performance. Such results di-
rectly validate the model-based metrics, which are shown be in agreement with the ground truth embodied
in the region overlap based measure.

Figure 1. Behaviour of proposed metrics with increasing registration perturbation:
a) Generalisation, b) Specificity and c) Tantimoto overlap

Finally, in order to obtain a quantitative comparison of the proposed algorithms we explore sensitivity
of the proposed metrics, where the slighter the difference which can be detected reliably, the more sensitive
the method. Sensitivity is in this case defined as the rate of change in the measure for a given perturba-
tion range, normalised by the average uncertainty in the measurement over that range. More formally,
sensitivity can be defined thus:

m−m0

d
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wherem is the quality measured for a given value of displacement,m0 is the measured quality at
registration,d is the degree of deformation andσ is the mean over the error bars. Sensitivity is evaluated for
all three of the proposed metrics and shown in Figure 2 with errors bars based on both an inter-instantiation
error and a measure-specific error. The Specificity measure is the most sensitive for any radius of the shuffle
distance followed by the overlap metric and Generalisation, with shuffle radii of 1.5 and 2.1 (equivalent to
3x3 and 5x5 neighbourhoods) giving optimal sensitivity.

Figure 2. The sensitivity of registration assessment methods.

The results shown in this abstract indicate that registration performance can be evaluated reliably both
in the cases when ground truth information is available and when it is not. In particular, the methods based
on generative statistical model evaluation are shown to be in agreement with the ground truth expressed
through the true image region overlap metric based on the Tantimoto formulation. Proposed metrics are
also shown to have sufficient sensitivity to detect very subtle changes in registration performance, on the
level of perturbations measured in fractions of a pixel.
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Abstract: We present a method for assessing the performance of non-rigid registration al-
gorithms, without the need for any form of ground truth. The method exploits the fact that,
given a set of non-rigidly registered images, a generative statistical appearance model can be
constructed. The quality of the model depends on the quality of the registration, and can be
evaluated by comparing images sampled from it with the original image set. We derive indices
of model specificity and generalisation, and show that they demonstrate the loss of registration
as a set of correctly registered images is progressively perturbed. We also show an application
of the method to comparing the performance of three different registration algorithms.

1. Introduction

Over the past few years, non-rigid registration (NRR) has been used increasingly as a basis for
medical image analysis. Applications include structural analysis, atlas matching and change
analysis [5]. Many different approaches to NRR have been proposed, for registering both pairs
and groups of images [4, 18]. These differ in terms of the objective function used to assess
the degree of mis-registration, the representation of spatial deformation fields, and the approach
to minimizing the mis-registration with respect to the deformations. The problem is highly
under-constrained and, given a set of images to be registered, each approach will, in general,
give a different result. This leads to a requirement for methods of assessing the quality of
registration.

Various methods have been proposed for assessing the results of NRR [8, 10, 15, 14]. Most
of these require access to some form of ground truth. One approach involves the construction
of artificial test data, which limits application to ’off-line’ evaluation. Other methods can be
applied directly to real data, but require that anatomical ground truth be provided, typically
involving annotation by an expert. This makes validation expensive and prone to subjective
error.

In this paper we present a method for evaluating the results of NRR that relies on the image
data alone, and can thus be applied routinely without the need for ground truth. It is based on the
observation that, given a set of registered images, it is possible to construct a statistical model of
appearance. If the registration is correct, this provides a concise description of the set of images.
If it is incorrect, the performance of the model degrades. We base our assessment of the quality
of registration on the quality of the resulting model.

In the remainder of the paper we explore the background, explain the method in detail, and
present validation results using data for which the correct registration is known.

2. Background

2.1. Assessing Non-Rigid Registration

One approach to assessing the results of NRR is to create a set of test images by taking original
images and applying known spatial deformations. Evaluation involves comparing the deforma-
tion fields recovered by NRR to those known to have been applied [14, 15]. This approach can
be used to test a given NRR method ’off-line’, but cannot be used to evaluate the results when
the method is applied to real data as part of a registration-based analysis.

An alternative approach involves measuring the coincidence of anatomical annotations fol-
lowing registration. Variants of this approach include measuring the mis-registration of anatom-
ical landmarks [8, 10], and the overlap between anatomically equivalent regions obtained using
manual or semi-automatic segmentation [10, 14]. These methods are of general application, but
are labour-intensive and error prone.

2.2. Statistical Models of Appearance

Statistical models of shape and appearance (combined appearance models) were introduced by
Cootes, Edwards, Lanitis and Taylor [2, 3, 7], and have since been applied extensively in medical



Fig. 1. The effect of varying the first model parameter of a brain appearance model by±2.5 standard
deviations.

image analysis [9, 12, 16]. The construction of an appearance model depends on establishing
a dense correspondence across a training set of images using a set of landmark points marked
consistently on each training image.

Using the notation of Cootes [3], the shape (configuration of landmark points) can be repre-
sented as a vectorx and the texture (intensity values) represented as a vectorg.
The shape and texture are controlled by statistical models of the form

x = x + Psbs

g = g + Pgbg
(3)

Wherebs are shape parameters,bg are texture parameters,x andg are the mean shape and
texture, andPs andPg are the principal modes of shape and texture variation respectively.
Since shape and texture are often correlated, we can take this into account in a combined statis-
tical model of the form

x = x̄ + Qsc
g = ḡ + Qgc

(4)

where the model parametersc control the shape and texture simultaneously andQs, Qg are
matrices describing the modes of variation derived from the training set. The effect of varying
one element ofc for a model built from a set of 2D MR brain image is shown in Fig. 1.

3. Model-Based Evaluation

3.1. Specificity and Generalisation

Our approach to the assessment of NRR relies on the close relationship between registration and
statistical model building, and extends the work of Davies et al. on evaluating shape models [6].
We note that NRR of a set of images establishes the dense correspondence which is required
to build a combined appearance model. Given the correct correspondence, the model provides
a concise description of the training set. As the correspondence is degraded, the model also
degrades in terms of its ability to reconstruct images of the same class, not in the training set
(Generalisation), and its ability to only synthesise new images similar to those in the training
set (Specificity). If we represent training images and those synthesised by the model as points
in a high dimensional space, the clouds represented by training and synthetic images ideally
overlap fully (see Fig. 2). Given a measure of the distance between images (see next section),
Specificity,S, Generalisation,G, and their standard errorsσS andσG can be defined as follows:

G =
1
n
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Fig. 3. The model evaluation framework. Fig. 2. Training set and model
Each image in the training set is compared synthesis in hyperspace
against every image generated by the model

Fig. 4. The calculation of Fig. 5. An example of the shuffle difference
a shuffle difference image image (right) when applied to two MR slices (left)

where {Ij : j = 1..m} is a large set of images sampled from the model,| · | is the distance
between two images and SD is standard deviation.

Both values are low for a good model. Specificity measures the mean distance between
images generated by the model and their closest neighbours in the training set, whilst Gen-
eralisation measures the mean distance between images in the training set and their closest
neighbours in the synthesised set. The approach is illustrated diagrammatically in Fig. 3.

3.2. Measuring Distances in Between Images

The most straightforward way to measure the distance between images is to treat each image
as a vector formed by concatenating the pixel/voxel intensity values, then take the Euclidean
distance. Although this has the merit of simplicity, it does not provide a very well-behaved dis-
tance measure since it increases rapidly for quite small image misalignments. This observation
led us to consider an alternative distance measure, based on the ’shuffle difference’, inspired
by the ’shuffle transform’ [11]. The idea is illustrated in Fig. 4. Instead of taking the sum of
squared differences between corresponding pixels, the minimum absolute difference between
each pixel in one image and the values in a shuffle neighbourhood around the corresponding
pixel is used. This is less sensitive to small misalignments, and provides a more well-behaved
distance measure.

4. Validation of the Approach

4.1. Perturbing Ground-Truth

We conducted a series of experiments to test the hypothesis that reduced registration accu-
racy can be detected using model specificity and generalisation. An equivalent 2D mid-brain
T1-weighted slice was obtained from each of 36 subjects using a 3D acquisition. A fixed num-
ber (167) of landmark points were positioned manually on the cortical surface, ventricles, cau-
date nucleus and lentiform nucleus, and used to establish a ground-truth dense correspondence
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Fig. 6. Specificity and Generalisation for increasing mis-registration of different shuffle neighbourhood
sizes.

over the set of images, using locally affine interpolation. A statistical appearance model was
constructed using the methods described in 4.3, with the set of landmark coordinates forming
the shape vectorx for each image. Keeping the shape vectors fixed, we then applied a series of
smooth pseudo-random spatial warps to the training images, resulting in successively increasing
mis-registration. Each warp resulted in an average point displacement of between one and two
pixels. Specificity and Generalisation results were obtained for 0, 1, 5, and 10 warps per image,
usingm = 1000.

4.2. Effects of the Shuffle Transform

The experiment described in the previous section was repeated for shuffle neighbourhoods of
1x1 (Euclidean distance), 3x3, 5x5, and 7x7, to test the hypothesis that this would extend the
range over which different degrees of mis-registration could be discriminated.

4.3. Comparing Different Methods of NRR

A common task in medical image analysis is the estimation of correspondences across a group
of images, to allow mapping of effects into a common co-ordinate frame when performing
population studies. A widely used approach is to use a non-rigid registration algorithm to map
a chosen reference image onto each example, defining the correspondence across the group
[12]. However, it has been argued [4] that thispairwiseapproach does not take advantage of
the full information in the group, and thus may lead to sub-optimal registration. We have been
investigatinggroupwisemethods of registration which aim to make the best use of the group as
a whole when estimating the correspondence. We work within a minimum description length
(MDL) framework. The aim is to construct a statistical appearance model which can exactly
synthesize each example in the training set as efficiently as possible [17]. It has been observed
that the more the compact the representation, the better the correspondences. The general ap-
proach is to define a deformation field between reference frame and each training image. For a
given choice of sets of fields, one can compute the cost of encoding the images (a combination
of the coding cost of the model, the cost of the parameters and the cost of residuals between
the synthesized images and the training images). The effect on this total description length
of modifying the deformation fields can be evaluated - the correspondence problem becomes
a (very high dimensional) optimisation problem. Within this general framework we compare
three different approaches (for details see [17]):

1. Pairwise registration, using the first image as a reference
2. Groupwise registration in which the reference model is just the current mean of the shape

and intensities across the training set, and no constraints are placed on the deformations
3. Groupwise registration to the mean including a term encouraging a compact representation

of the set of deformations.

Though the algorithms will work in 3D, for the evaluation experiments we concentrate on a 2D
implementation (allowing more large-scale experiments to be performed). We have a dataset
of 104 3D MR images of normal brains1 , which have been affine aligned and a single slice at
equivalent location extracted from each. Fig. 5 (left) shows examples of extracted slices. In
order to evaluate the different registration algorithms outlined above, we register the 104 2D

1 The age matched normals in a dementia study generously provided by X (anonymised).



Fig. 7. The first mode of an appearance model of the brain whose training set was subjected to deformation.
±2.5 standard deviations are shown.

Fig. 8. Appearance model which was built automatically by group-wise registration. First mode is shown,
±2.5 standard deviations.

slices using the different techniques, construct statistical models from them and calculate the
specificity and generalisation measures.

5. Results

The results of the experiment to test the effect of increasing mis-registration are shown in Fig. 6.
These demonstrate that, for all sizes of shuffle neighbourhood, the specificity and generalisation
values increase (get worse) with increasing mis-registration2. The results for different sizes of
shuffle neighbourhood demonstrate that the range of mis-registration over which distinct values
of specificity and generalisation are obtained increases as the neighbourhood size increases.

The results of the comparison between three different methods of NRR are shown in Fig.
9. These show that, particularly in terms of specificity, we can distinguish between the three
approaches, with the fully groupwise method performing best, as anticipated. A model built
using this approach is shown in Fig. 8.

6. Discussion and Conclusions

We have introduced a model-based approach to assessing the accuracy of non-rigid registration,
without the need for ground truth. The validation experiments, based on perturbing correspon-
dences obtained using ground truth, show that we are able to detect increasing mis-registration
using just the registered image data. The results obtained for different sizes of shuffle neigh-
bourhood show that the use of shuffle distance rather than Euclidean distance improves the range
of mis-registration over which we can detect significant changes in registration accuracy. We
have also shown that the approach is capable of detecting statistically significant differences in
registration accuracy between three different (plausible) approaches to NRR.

2 Except that Generalisation is unstable for a 1x1 shuffle neighbourhood (Euclidean distance).

Fig. 9. Registration evaluation which compares 3 different registration algorithms. Specificity is shown
on the left and generalisation ability on the right. Values are the mean over a wide range of modes in the
model.



We believe that this represents an important advance in the assessment of NRR, because it
establishes an entirely objective basis for evaluating the reliability of NRR-based experiments,
and for comparing the performance of different methods of NRR. The fact that no ground truth
data is required means that the method can be applied routinely. Further work is needed to com-
pare the results obtained using our new approach with those obtained using more sophisticated
segmentation-based methods of evaluation.
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