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Abstract the paper we restrict our attention to AAMs, but the meth-
ods presented could be applied to any generative appearance
Generative models of appearance have been studied exmodel.
tensively as a basis for imageterpretation by synthesis There has been relatively little previous work on
Typically, these models are statistical, learnt from sets of model evaluation. One approach is to test a complete
training images. Different methods of representation and interpretation-by-synthesis framework, providing an im-
training have been proposed, but little attention has been plicit evaluation of the models themselves. This requires
paid to evaluating the resulting models. We propose a access to ground truth, allowing interpretation errors to be
method of evaluation that is independent of the form of quantified B, 1]. The most serious weakness of this ap-
model, relying only on the generative property. The evalua- proach is that it confounds the effects of model quality and
tion is based on the measures of magjmcificityand model the behaviour of the search algorithm. The need for ground
generalisation abilityThese are calculated from sets of dis- truth data is also undesirable, because it is labour intensive
tances between synthetic images generated by the modeb provide and can introduce subjective error.
and those in the training set. The approach is validated  We propose a method for evaluating appearance models,
using Active Appearance Models (AAMs) of face and brain that uses just the training set and the model to be evaluated.
images, and shows that these measures both degrade mondrhis builds on the work of Davies et &i][ who tackled the
tonically as the models are progressively degraded. Finally, simpler problem of evaluating shape models. Our approach
we compare three distinct automatic methods of construct-is to measure, directly, the similarity between the distribu-
ing appearance models, and show that we can detect signiftion of images generated by the model, and the distribution
icant differences between them. of training images. We define two measurspecificity—
the overlap of the distribution of model-generated images
with the distribution of training images, amgggneralisation
1. Introduction ability — the overlap of the distribution of training images
with the distribution of model-generated images. We val-

Interpre_tation l_)y synthes_is has beco”.‘e a popular aPigate the approach by generating progressively degraded
proach to image interpretation, because it provides a sys-

. S models, demonstrating that both specificity and generalisa-
tematic frgmewqu forapplying rich knowledge ofthe prob- tion also degrade, monotonically. We also apply the method
Iem domam._ Active Appearance Models (AAMS)_[ ] are to a real model evaluation problem.
typical of this approach. There are two essential compo-
nents: a generative model of appearance, and a method for
searching the model space for the instance that best matched- Background
a given target image. In this paper we concentrate on thez_l_ Statistical Models of Appearance
first of these.

Generative models of appearance are generally statis- Statistical models of shape and appearance (combined
tical in nature, and derived from training sets of images. appearance models) were introduced by Cootes, Edwards,
AAMs use models that are linear in shape and texture. TheirLanitis and Taylor I, 2], and have since been applied ex-
construction relies on finding a dense correspondence betensively (eg [4, 11, 10]). The construction of an appear-
tween images in the training set, which can be based onance model depends on establishing a dense correspondence
manual annotation or on an automated approach (see beacross atraining set of images using a set of landmark points
low). Other approaches to constructing appearance modelsnarked consistently on each training image.
include methods based on non-linear manifolds in appear- Using the notation of Coote<], the shape (configura-
ance space3] and kernel PCA 4]. In the remainder of  tion of landmark points) can be represented as a vector



and the texture (intensity values) represented as a vgctor based on the work of Davies et &l][ who defined speci-
The shape and texture are controlled by statistical modelsficity and generalisation ability for shape models. To be ef-
of the form fective, a model needs the ability to generate a broad range
of examples of the class of images that have been modelled.
We refer to this asGeneralisationability. Although this
property is necessary , it is not sufficient. We also require
that the model can only generate examples that are consis-
tent with the class of images modelled. We refer to this as
Whereb, are shape parametets, are texture parameters, Specificity We define both of these measures by compar-
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X andg are the mean shape and texture, BacandP , are ing the distribution of training images and the distribution
the principal modes of shape and texture variation respec-of images generated using the model. An overview of the
tively. approach is given in Figurz Any image can be considered

Since shape and texture are often correlated, this can b&s a pointin a high-dimensional space (defined by it's inten-
taken into account in a combined statistical model of the sity values). The training set forms a cloud of points in such
form a space. If we sample from the model, we generate a second
cloud of points in this space. For an ideal model, the two
clouds are coincident. We defi@eneralisatiorandSpeci-
X=X+ Qsc @ ficity in terms of the distance from each training image to
g=g+ Qqc the nearest model-generated image, and the distance from
each model-generated image to the nearest training image.
where the model parameteescontrol the shape and tex- We discuss the choice of an appropriate distance metric in
ture simultaneously an@;, Q, are matrices describing the section3.3.
modes of variation derived from the training set. The effect
of varying one elemen_t crf_for a model built from a set of 3.1. Generalisation
face images is shown in Figuie
Generalisation of a model defines its ability to generalise
2.2. The Correspondence Problem to or represent well images of the modeled class both seen
A key step in building a combined appearance model is (in the training set) and unseen (notin the training sgt). A
that of establishing a dense correspondence across the Sg;{lodel that compreh_enswely captures the _varlatlor_1 N the
modeled class of object should be close, i.e. exhibit low

g;:lzl:ml? '?12%?;6"!” E;?ﬂ;ﬁh;m'svfitﬁ gilta(;h&ivﬁgn?f distance, to all the images from that class). In practice this
9up 9 y y means that all the training examples used to construct the

marks andllnterpolalltmg betyveen ”‘e”?- Regently there hasmodel should be close to model distribution sampled by
been considerable interest in automating this process. On

approach is to use non-rigid registration methods develope he model-generated synthetic examples. Given the frame-

) B g ) ) work defined for evaluation of specificity above, i.e. a large
for use in medical image analysis, to align the images by op- . .
N X S set of synthetic example images sampled from the model
timising a measure of image similarity4, 11]. An alterna-

i ) 2 . {I; : j = 1..m} and a measure of the distance between im-
ive approach refines an initial estimate of correspondence N
. ; . ages - |, Generalisatiods of a model and the standard error

so as to code the training set of images as efficiently as POS 1 its measurement can be defined as follows:
sible [5]. We have recently described an approach based on '
optimising the total description length of the training set,
using the modelT6]. n

In section4.1we validate our approach to model evalua- G=— > min;l|l; — I, 3)
tion by deliberately perturbing the correspondences in mod- "i=1
els built using manual annotation to establish correspon-
dence. In sectiort.3 we use a method of evaluation to .
compare models built using non-rigid registratiari,[11] S SD(min ; |I; — 1;])
and the minimum description length groupwise registration vn—1 ’
approach of Twining et al.

(4)

i.e. itis the average distance from each training image to its
3. Appearance Model Evaluation nearest neighbour in the image set generated by the model.
Once again, good models exhibit low values of Generalisa-
Our approach to model evaluation is based on measur+ion indicating that the modelled class is well-represented
ing, directly, key properties of the model. This approach is by the model.



Figure 1. The effect of varying the first model parameter of a facial appearance ma#elbgtandard deviations

3.2. Specificity to original training examples. Conversely, as a model de-
grades the generated examples get further away from the

Specificity _Of an appearance model defines its ability to training examples increasing the distance and consequently
generate realistic, new examples of the modelled class. ASpecificity

model that correctly describes the variation within an ob-
ject class should be able to _prgduce new examples _of th93'3' Measuring Distances Between Images
class that would appear realistic compared to the original
training set used to create the model. Conversely, a de- The most straightforward way to measure the distance
graded model would be unable to articulate the main modesbetween images is to evaluate the absolute difference be-
of object appearance and would only produce new exam-tween them, or alternatively treat them as vectors by con-

ples disparate from the original training set. This defini- catenating pixel/voxel values and take the Euclidean dis-

tion is used to practically measure Specificity. Specifically, tance. Although this has the merit of simplicity, it does not

given{I; : j = 1l..m} as a large set of synthetic exam- provide a very robust distance measurement. In the con-
ple images sampled from the model and having the sametext of model and image registration evaluation considered
distribution, SpecificityS is defined as the average distance here, such direct measurement results in a distance that in-
between each of the synthetic examples and it closest neighereases rapidly even for quite small image misalignments.

bour in the original training set: Robustness can be added to the distance evaluation by con-
sidering a 'shuffle difference’, inspired by the 'shuffle trans-
X, g)[d]gsflll’ form’[15]. The idea i§ to seek correspon'dence with a wider
[ < e area around each pixel. Instead of taking the mean abso-
% x — @ GCeneralisation lute difference between corresponding pixels, the mean of
X X % o Ml il 9 @ minimum absolute difference between each pixel in one im-
x ;—X;L () *\. age and pixels in ahuffle neighbourhoodround the corre-
X g | @ Min JI- 1| sponding pixel in the other is used. This approach is less
™ = — Ry sensitive to small misalignments, and provides a more ro-
X, bust image distance evaluation. Furthermore, the sensitiv-

ity to misalignment is directly determined by the size and
type of the shuffle neighbourhood. One obvious choice is
a square box around the corresponding pixel. A more even
treatment of the local region is provided by a shulffle disc, of
m radiusr, that only considers pixels located withinof the
S — 1 S ming I — I (5) central pixel. Examples of shuffle distance evaluation with
. varying r between two brain examples, the original image
and missaligned version, are shown in Fig8r&he effect
wherel; is the th training image| - | describes the dis- of the shuffle neighbourhood radius on the distance mis-
tance between two images and SD is the standard deviation@lignment sensitivity is obvious as the distance perceivably

Equivalently, the standard error in the measurements decreases in areas of small missalignment and becomes less
thus: noisy as we go from = 0 tor = 3.7 (roughly equivalent
to a 7x7 square window).

Figure 2. Hyperspace representation of the model (metric) evalua-
tion approach

m— 1 4. Experimental Evaluation

Generally, for a good model the Specificity is low asthe  The proposed model evaluation approach is demon-
images generated by the model are similar (low distance)strated in two stages. In the firstinstance, a set of validation



training images were used to construct degraded versions
of the original model. Figuré(centre and right) shows the
models obtained using progressively degraded training data.
Models degraded using a range of mean pixel displace-
Figure 3. Shuffle distance evaluation: left - original image , right - ment (from the correct registration) were evaluated using
warped image, centre from left: distance withk 0 (abs diff), 1.5, the method described in sectiBnusing Euclidean distance
29and3.7 (r = 0) and three different values of shuffle radius 1.5,
2.9 and 3.7. In each case, = 1000 images were synthe-

experiments are performed where the behaviour of the met-Siséd using the first 10 modes of the model, and Specificity
rics is observed for a deliberate and controlled degradation@nd Generalisation were estimated.

of set of appearance models. The approach is then practi- Results are shown for the brain data in Figtir&he re-
cally demonstrated on the problem of choosing an optimal Sults for the face data are similar, as showrjrbut they
non-rigid registration algorithm for automatic construction &€ based on a single instantiation rather than 10, which

of appearance models. makes the curves worse beyond the range of a 3 pixel mean
displacement. As expected, Specificity and Generalisation
4.1. Validation both degrade (increase in value) as the mis-registration is

o ) progressively increased. In most cases there is a monotonic
_ The purpose of the validation experiment was to estab-g|ationship between Specificity/Generalisation and model
lish if our measures of Specificity and Generalisation were degradation, but this is not the case when Euclidean dis-
able to detect a known model degradation. We also in-ance js used. Note that there is a measurable difference in
tended to investigate the effect of varying shuffle radius. i, metrics, even for fairly small registration perturbations
Experiments were performed using two very different data (eg the model ofi(center)). The steepness of the curve in

sets. The first consisted of corresponding 2D mid-brain yhe resyits for Euclidean distance already suggests that the
T1-weighted slices obtained from 3D MR scans of 36 sub- |,se of shuffle distance gives better results.

jects. In each of the images, a fixed number (167) of land-

mark points were positioned manually on key anatomical 4 2 Comparison with Ground Truth?
structures (cortical surface, ventricles, caudate nucleus and

lentiform nucleus), and used to establish a ground-truth ~Model and registration? Overlap?
dense correspondence over the entire set of images, usin% L .
locally affine interpolation. The second consisted of 68 #-3- Application to Model Evaluation

frontal face images with blacked out backgrounds (to avoid  \we used our new method to evaluate three different mod-
biasing the distance measurements) with ground truth cor-g|s built using an enlarged set of the brain data containing
respondence defined using 68 landmark points positioned] 04 affine aligned images (ground truth was not required for
ConSiStently on the facial features in each image. this experiment)_ It has been shown previ0u5;|y,[ ] that

an appearance model can be built by registering each image
in a set (pairwise) to a reference image. 1ii][we argued
that a 'groupwise’ approach that took proper account of the
whole group might be expected to perform better. We built
three models, one using the pairwise approach, and two
variants of our groupwise approach. The results, includ-
ing different numbers of modes in the models, are shown in
Figure 4. Model constructed from ground-truth annotation: left, Figure7 and demonstrate a clear advantage in terms of both
and models constructed with increasingly degraded registration: Specificity and Generalisation for both groupwise methods
centre and right (variation e£2.50y) in first three modes over the pairwise approach. It was not possible to discrimi-

_ o _ nate between the two groupwise methods.
The first 3 modes of variation of the the face model built

using the ground-truth correspondence is shown in Figure
4(left). Keeping the shape vectors defined by the land-
mark locations fixed, smooth pseudo-random spatial warps, We have introduced an objective method of assessing ap-
based on bi-harmonic Clamped Plate Splines (CPS) werepearance models that depends only on the model to be tested
then applied to the training images. The warps comprisedand the training data from which it was generated. Vali-
25 knot-points and the extent of these warps was carefullydation experiments, based on perturbing correspondences
studied. By increasing the warp magnitude, successively in-obtained using ground truth, show that we are able to de-
creasing mis-registration was achieved. The mis-registeredect increasing model degradation reliably. The results ob-

5. Summary and Conclusions
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Figure 5. Specificity and Generalisation of degraded brain models.
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Figure 6. Specificity and Generalisation (with error bars) of degraded faces models.
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tion, by providing an objective basis for comparing different
methods of constructing generative models of appearance.
Models and registration? Overlap?
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