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Abstract

Generative models of appearance have been studied ex-
tensively as a basis for imageinterpretation by synthesis.
Typically, these models are learnt from sets of training im-
ages and are statistical in nature. Different methods of rep-
resentation and training have been proposed, but little at-
tention has been paid to evaluating the resulting models. We
propose a method of evaluation that is independent of the
form of model, relying only on the generative property. We
define thespecificityand generalisation abilityof a model
in terms of distances between synthetic images generated
by the model and those in the training set. We validate
the approach, using Active Appearance Models (AAMs) of
face and brain images, and show that specificity and gen-
eralisation degrade monotonically as the models are pro-
gressively degraded. We compare two different inter-image
distance metrics, and show thatshuffle distanceperforms
better than Euclidean distance. We then compare three dif-
ferent automatic methods of constructing appearance mod-
els, and show that we can detect significant differences be-
tween them. Finally, we contend that model construction
is analogous to the task of non-rigid registration. The for-
mer requires correspondence across images, whereas the
other attain to find that correspondence. We then compare
our method against another method that is based onground
truthand show that both are in tight agreement.

1. Introduction

Interpretation by synthesis has become a popular ap-
proach to image interpretation, because it provides a sys-
tematic framework for applying rich knowledge of the prob-
lem domain. Active Appearance Models (AAMs) [1, 2] are
typical of this approach. There are two essential compo-
nents: a generative model of appearance, and a method for
searching the model space for the instance that best matches
a given target image. In this paper we concentrate on the
first of these.

Generative models of appearance are generally statis-
tical in nature, and derived from training sets of images.

AAMs use models that are linear in shape and texture. Their
construction relies on finding a dense correspondence be-
tween images in the training set, which can be based on
manual annotation or on an automated approach (see be-
low). Other approaches to constructing appearance models
include methods based on non-linear manifolds in appear-
ance space [3] and kernel PCA [4]. In the remainder of
the paper we restrict our attention to AAMs, but the meth-
ods presented could be applied to any generative appearance
model.

There has been relatively little previous work on
model evaluation. One approach is to test a complete
interpretation-by-synthesis framework, providing an im-
plicit evaluation of the models themselves. This requires
access to ground truth, allowing interpretation errors to be
quantified [8, 1]. The most serious weakness of this ap-
proach is that it confounds the effects of model quality and
the behaviour of the search algorithm. The need for ground
truth data is also undesirable, because it is labour intensive
to provide and can introduce subjective error.

We propose a method for evaluating appearance models,
that uses just the training set and the model to be evaluated.
This builds on the work of Davies et al [6], who tackled the
simpler problem of evaluating shape models. Our approach
is to measure, directly, the similarity between the distribu-
tion of images generated by the model, and the distribution
of training images. We define two measures:specificity–
the overlap of the distribution of model-generated images
with the distribution of training images, andgeneralisation
ability – the overlap of the distribution of training images
with the distribution of model-generated images. We val-
idate the approach by generating progressively degraded
models, demonstrating that both specificity and generalisa-
tion also degrade, monotonically. We also apply the method
to a real model evaluation problem.

2. Background

2.1. Statistical Models of Appearance

Statistical models of shape and appearance (combined
appearance models) were introduced by Cootes, Edwards,

1
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Lanitis and Taylor [1, 2], and have since been applied ex-
tensively (eg [14, 11, 10]). The construction of an appear-
ance model depends on establishing a dense correspondence
across a training set of images using a set of landmark points
marked consistently on each training image.

Using the notation of Cootes [2], the shape (configura-
tion of landmark points) can be represented as a vectorx
and the texture (intensity values) represented as a vectorg.

The shape and texture are controlled by statistical models
of the form

x = x + Psbs

g = g + Pgbg
(1)

Wherebs are shape parameters,bg are texture parameters,
x andg are the mean shape and texture, andPs andPg are
the principal modes of shape and texture variation respec-
tively.
Since shape and texture are often correlated, this can be
taken into account in a combined statistical model of the
form

x = x̄ + Qsc
g = ḡ + Qgc

(2)

where the model parametersc control the shape and tex-
ture simultaneously andQs, Qg are matrices describing the
modes of variation derived from the training set. The effect
of varying one element ofc for a model built from a set of
face images is shown in Figure??.

2.2. The Correspondence Problem

A key step in building a combined appearance model is
that of establishing a dense correspondence across the set
of training images. In practice, this is often achieved by
marking up the training set manually with a set of key land-
marks and interpolating between them. Recently there has
been considerable interest in automating this process. One
approach is to use non-rigid registration methods developed
for use in medical image analysis, to align the images by op-
timising a measure of image similarity [14, 11]. An alterna-
tive approach refines an initial estimate of correspondence
so as to code the training set of images as efficiently as pos-
sible [5]. We have recently described an approach based on
optimising the total description length of the training set,
using the model [16].

In section4.1we validate our approach to model evalua-
tion by deliberately perturbing the correspondences in mod-
els built using manual annotation to establish correspon-
dence. In section4.3 we use our method of evaluation to
compare models built using non-rigid registration [14, 11]
and our own minimum description length approach.

3. Appearance Model Evaluation

Our approach to model evaluation is based on measur-
ing, directly, key properties of the model. To be effective,
a model needs the ability to generate a broad range of ex-
amples of the class of images that have been modelled. We
refer to this asGeneralisationability. Although this prop-
erty is necessary , it is not sufficient. We also require that the
model can only generate examples that are consistent with
the class of images modelled. We refer to this asSpecificity.
We define both of these measures by comparing the dis-
tribution of training images and the distribution of images
generated using the model. An overview of the approach
is given in Figure2. Any image can be considered as a
point in a high-dimensional space (defined by it’s intensity
values). The training set forms a cloud of points in such a
space. If we sample from the model, we generate a second
cloud of points in this space. For an ideal model, the two
clouds are coincident. We defineGeneralisationandSpeci-
ficity in terms of the distance from each training image to
the nearest model-generated image, and the distance from
each model-generated image to the nearest training image.
We discuss the choice of an appropriate distance metric in
section3.3.

Figure 2. Hyperspace representation of the model (metric) evalua-
tion approach

3.1. Generalisation

Generalisation of a model defines its ability to generalise
to or represent well images of the modeled class both seen
(in the training set) and unseen (not in the training set). A
model that comprehensively captures the variation in the
modeled class of object should be close, i.e. exhibit low
distance, to all the images from that class). In practice this
means that all the training examples used to construct the
model should be close to model distribution sampled by
the model geneted synthetic examples. Given the frame-
work defined for evaluation of specificity above, i.e. a large
set of synthetic example images sampled from the model
{Ij : j = 1..m} and a measure of the distance between im-
ages| · |, GeneralisationG of a model and the standard error

2
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Figure 1. The effect of varying the first model parameter of a facial appearance model by±2.5 standard deviations.

on its measurementσG can be defined as follows:

G =
1
n

n∑
i = 1

minj |Ii − Ij |, (3)

σG =
SD(min j |Ii − Ij |)√

n − 1
, (4)

i.e. it is the average distance from each training image to its
nearest neighbour in the image set generated by the model.
Once again, good models exhibit low values of Generalisa-
tion indicating that the modelled class is well-represented
by the model.

3.2. Specificity

Specificity of an appearance model defines its ability to
generate realistic, new examples of the modelled class. A
model that correctly describes the variation within an ob-
ject class should be able to produce new examples of the
class that would appear realistic compared to the original
training set used to create the model. Conversely, a de-
graded model would be unable to articulate the main modes
of object appearance and would only produce new exam-
ples disparate from the original training set. This defini-
tion is used to practically measure Specificity. Specificaly,
given {Ij : j = 1..m} as a large set of synthetic exam-
ple images sampled from the model and having the same
distribution, SpecificityS is defined as the average distance
between each of the synthetic examples and it closest neigh-
bour in the original training set:

S =
1
m

m∑
j = 1

mini |Ii − Ij |. (5)

whereIi is the îth training image,| · | describes the dis-
tance between two images and SD is the standard deviation.
Equivalently, the standard error in the measurementσS is
thus:

σS =
SD(min j |Ii − Ij |)√

m − 1
. (6)

Generally, for a good model the Specificity is low as the
images generated by the model are similar (low distance)
to original training examples. Conversely, as a model de-
grades the generated examples get further away from the

training examples increasing the distance and consequently
Specificity.

3.3. Measuring Distances Between Images

The most straightforward way to measure the distance
between images is to evaluate the absolute difference be-
tween them, or alternatively treat them as vectors by con-
catenating pixel/voxel values and take the Euclidean dis-
tance. Although this has the merit of simplicity, it does not
provide a very robust distance measurement. In the con-
text of model and image registration evaluation considered
here, such direct measurement results in a distance that in-
creases rapidly even for quite small image misalignments.
Robustness can be added to the distance evaluation by con-
sidering a ’shuffle difference’, inspired by the ’shuffle trans-
form’ [15]. The idea is to seek correspondence with a wider
area around each pixel. Instead of taking the mean abso-
lute difference between corresponding pixels, the mean of
minimum absolute difference between each pixel in one im-
age and pixels in ashuffle neighbourhoodaround the corre-
sponding pixel in the other is used. This approach is less
sensitive to small misalignments, and provides a more ro-
bust image distance evaluation. Furthermore, the sensitiv-
ity to misalignment is directly determined by the size and
type of the shuffle neighbourhood. One obvious choice is
a square box around the corresponding pixel. A more even
treatment of the local region is provided by a shuffle disc, of
radiusr, that only considers pixels located withinr of the
central pixel. Examples of shuffle distance evaluation with
varying r between two brain examples, the original image
and missaligned version, are shown in Figure3. The effect
of the shuffle neighbourhood radius on the distance mis-
alignment sensitivity is obvious as the distance perceivably
decreases in areas of small missalignment and becomes less
noisy as we go fromr = 0 to r = 3.7 (roughly equivalent
to a 7x7 square window).

Figure 3. Shuffle distance evaluation: left - original image , right -
warped image, centre from left: distance withr = 0 (abs diff), 1.5,
2.9 and 3.7

3
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4. Experimental Evaluation

The proposed model evaluation approach is demon-
strated in two stages. In the first instance, a set of validation
experiments are performed where the beheviour of the met-
rics is observed for a deliberate and controlled degradation
of set of appearance models. The approach is then practi-
cally demonstrated on the problem of choosing an optimal
non-rigid registration algorithm for automatic construction
of appearance models.

4.1. Validation

The purpose of the validation experiment was to estab-
lish if our measures of Specificity and Generalisation were
able to detect a known model degradation. The effect of
varying shuffle radius. Experiments were performed using
tow very different data sets. The first consisted of corre-
sponding 2D mid-brain T1-weighted slices obtained from
3D MR scans of 36 subjects. In each of the images, a fixed
number (167) of landmark points were positioned manu-
ally on key anatomical structures (cortical surface, ventri-
cles, caudate nucleus and lentiform nucleus), and used to
establish a ground-truth dense correspondence over the en-
tire set of images, using locally affine interpolation. The
second consisted of 68 frontal face images with blacked out
backgrounds (to avoid biasing the distance measurements)
with ground truth correspondence defined using 68 land-
mark points positioned consistently on the facial features in
each image.

Figure 4. Model constructed from ground-truth annotation: left,
and models constructed with increasingly degraded registration:
centre and right(variation of±2.5σ0)in first three modes

The first 3 modes of variation of the the face model built
using the ground-truth correspondence is shown in Figure
4(left). Keeping the shape vectors defined by the landmark
locations fixed, a series of smooth pseudo-random spatial
warps, based on bi-harmonic Clamped Plate Splines (CPS)
were then applied to the training images, resulting in suc-
cessively increasing mis-registration – see Figure9. The
average pixel displacement from the original is shown be-
low each image. Visually the warps vary from hardly no-
ticeable (1 or 3 warps) to gross distortion (20 warps). The
mis-registered training images were used to construct de-
graded versions of the original model. Figure4(centre and
right) shows the models obtained using 1 and 11 concate-
nated CPS warps respecively.

Figure 5. Registration degradation examples for 0,1,3,5,11 and 20
concatenated smooth CPS warps with Euclidean distance to the
original below

Models degraded using 1,2,3,5,8,11 and 15 concatenated
CPS warps were evaluated using the method described in
section3, using Euclidean distance (r = 0)and three differ-
ent values of shuffle radiusr = 1.5, 2.9 and 3.7. In each
case,m = 1000 images were synthesised using the first
10 modes of the model, and Specificity and Generalisation
were estimated.

Results are shown for the brain data in Figure6. The
results for the face data were similar. As expected, Speci-
ficity and Generalisation both degrade (increase in value)
as the mis-registration is progressively increased. In most
cases there is a monotonic relationship between Specifici-
ity/Generalisation and model degradation, but this is not the
case when Euclidean distance is used. Note that there is a
measurable difference in both metrics, even for very small
registration perturbations (eg the model of4(center)).

The lack of monotonicity in the results for Euclidean
distance already suggests that the use of shuffle distance
gives better results. To investigate this further we calculated
the sensitivity of each method – defined as (average slope
of Specificity/Generalisation)/(average standard error) – for
each value of image warp. The results for the face data
are shown in Figure6(bottom). The results for the brain
data were similar. This shows a very significant advantage
with increasing shuffle distance, suggesting that better dis-
crimination between models is possible if shuffle distance
is used.

4.2. Comprarison with Ground Truth

Model-¡reg

4.3. Application to Model Evaluation

We used our new method to evaluate three different mod-
els built using an enlarged set of the brain data containing
104 affine aligned images (ground truth was not required for
this experiment). It has been shown previously [14, 11] that
an appearance model can be built by registering each image

4
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Figure 6. Specificity and Generalisation (with error bars) of regis-
tration degraded brain models (top row) and corresponding sensi-
tivity evaluated on face data

in a set (pairwise) to a reference image. In [16] we argued
that a ’groupwise’ approach that took proper account of the
whole group might be expected to perform better. We built
three models, one using the pairwise approach, and two
variants of our groupwise approach. The results, includ-
ing different numbers of modes in the models, are shown in
Figure7 and demonstrate a clear advantage in terms of both
Specificity and Generalisation for both groupwise methods
over the pairwise approach. It was not possible to discrimi-
nate between the two groupwise methods.

Figure 7. Specificity and Generalisation of the three automatic
model construction approaches

5. Summary and Conclusions

We have introduced an objective method of assessing ap-
pearance models that depends only on the model to be tested
and the training data from which it was generated. Vali-
dation experiments, based on perturbing correspondences
obtained using ground truth, show that we are able to de-
tect increasing model degradation relaiably. The results ob-
tained for different sizes of shuffle neighbourhood show that
the use of shuffle distance rather than Euclidean distance

ensures monotonicity and increases the sensitivity of the
method. We have also shown that the approach is capable of
detecting statistically significant differences between mod-
els based on different approaches to automated model build-
ing. We believe that this work makes a valuable contribu-
tion, by providing an objective basis for comparing different
methods of constructing generative models of appearance.

model¡¿reg

Figure 8. New

Figure 9. New
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