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Abstract the paper we restrict our attention to AAMs, but the meth-
ods presented could be applied to any generative appearance
Generative models of appearance have been studied exmodel.
tensively as a basis for imagaterpretation by synthe- There has been relatively little previous work on
sis Typically, these models are statistical, learnt from model evaluation. One approach is to test a complete
sets of training images. Different methods of representa- interpretation-by-synthesis framework, providing an im-
tion and training have been proposed, but little attention plicit evaluation of the models themselves. This requires
has been paid to evaluating the resulting models. We pro-access to ground truth, allowing interpretation errors to be
pose a method of evaluation that is independent of the formquantified B, 1]. The most serious weakness of this ap-
of model, relying only on the generative property. The proach is that it confounds the effects of model quality and
evaluation is based on measures of mosj@cificity and the behaviour of the search algorithm. The need for ground
model generalisation ability These are calculated from truth data is also undesirable, because it is labour intensive
sets of distances between synthetic images generated by th® provide and can introduce subjective error.
model and those in the training set. We have validated We propose a method for evaluating appearance models,
the approach using Active Appearance Models (AAMs) of that uses just the training set and the model to be evaluated.
face and brain images, showing that both measures worserThis builds on the work of Davies et &i]} who tackled the
monotonically as the models are progressively degraded.simpler problem of evaluating shape models. Our approach
Finally, we compare three distinct automatic methods of is to measure, directly, the similarity between the distribu-
constructing appearance models, and show that we can de+tion of images generated by the model, and the distribution
tect significant differences between them. of training images. We define two measurepecificity—
the overlap of the distribution of model-generated images
with the distribution of training images, amgggneralisation
1. Introduction ability — the overlap of the distribution of training images
with the distribution of model-generated images. We val-

Interpre_tation l_)y synthes_is has beco”.‘e a popular aPigate the approach by generating progressively degraded
proach to image interpretation, because it provides a sys-

. S models, demonstrating that both specificity and generalisa-
tematic frgmewqu forapplying rich knowledge ofthe prob- tion also degrade, monotonically. We also apply the method
Iem domam._ Active Appearance Models (AAMS)_[ ] are to a real model evaluation problem.
typical of this approach. There are two essential compo-
nents: a generative model of appearance, and a method for
searching the model space for the instance that best matched- Background
a given target image. In this paper we concentrate on thez_l_ Statistical Models of Appearance
first of these.

Many generative models of appearance are statistical in  Statistical models of shape and appearance (combined
nature, derived from sets of training images. AAMs use appearance models) were introduced by Cootes, Edwards,
models that are linear in both shape and texture. TheirLanitis and Taylor [, 2], and have since been applied ex-
construction relies on finding a dense correspondence betensively (eg [4, 11, 10]). The construction of an appear-
tween images in the training set, which can be based onance model depends on establishing a dense correspondence
manual annotation or on an automated approach (see beacross atraining set of images using a set of landmark points
low). Other approaches to constructing appearance modelsnarked consistently on each training image.
include methods based on non-linear manifolds in appear- Using the notation of Coote<’], the shape (configu-
ance space3] and kernel PCA 4]. In the remainder of  ration of landmark points) can be represented as a vector



x and the texture (intensity values) in a shape-normalisedof examples of the class of images that have been modelled.

frame represented as a vecgor We refer to this asGeneralisationability. Although this
The shape and texture are controlled by statistical modelsproperty is necessary , it is not sufficient. We also require
of the form: that the model can only generate examples that are consis-

tent with the class of images modelled. We refer to this as
Specificity We define both of these measures by compar-
g = g+Pyb, (1) ing the distribution of training images and the distribution
Whereb, are shape parametets, are texture parameters, of images_ge_nerat_ed _using the _model. An overvieyv of the
% andg are the mean shape and texture, BacandP, are ~ @PProachis given in Figur& Any image can be cons_lfjgred
the principal modes of shape and texture variation respec-2S & Pointin a high-dimensional space (defined by it's inten-
tively. sity values). The training set forms a cloud of points in such
Since shape and texture are often correlated, this can b& SPace. If we sample from the model, we generate a second
taken into account in a combined statistical model of the ¢loud of points in this space. For an ideal model, the two

x = X+ P,b,

form: clouds are coincident. We defi@eneralisatiorandSpeci-
ficity in terms of the distance from each training image to
x = X+Qsc the nearest model-generated image, and the distance from
g = E+Qc (2) each model-generated image to the nearest training image

respectively. We discuss the choice of an appropriate dis-

where the model parameterscontrol the shape and tex-  {5nce metric in sectiod. 3.

ture simultaneously an@, Q, are matrices describing the
modes of variation derived from the training set. The effect 3 1. Generalisation
of varying one element af for a model built from a set of

face images is shown in Figufie The Generalisation ability of a generative appearance
model measures the extent to which it is able to repre-
2.2. The Correspondence Problem sent images of the modelled class both seen (in the train-

A kev step in buildi bined del | ing set) and unseen (not in the training set). A model
ey step in bullding a combined appearance modet 1S t?at comprehensively captures the variation in the modelled

th?t (.Jf e;tabllshlng a deqse co.rre.spondence.across the set Yass should generate a distribution of images that overlaps
training images. In practice, this is often achieved by mark- the training distribution as completely as possible. This

ing up the training set manually with a set of key landmarks means that, if we generate a large set of synthetic images
and interpolating between them. Recently there has been ' '

} . . . ) {I,:a=1,...m}, from the model, each image in the
considerable interest in automating this process. One ap'training set should be close to a synthetic image. Given

proach is to use non-rigid registration methods, developeda measure} - |, of the distance between images, we define

for usein medical image anaIyS|§, _to ghgn the images by the Generalisatiod’ of a model and its standard errot;,
optimising a measure of image similarity4, 11]. An al- as follows:

ternative approach refines an initial estimate of correspon-

dence so as to code the training set of images as efficiently 1
as possiblet]. Twining et al have recently described an ap- G=-Y min [1; — |, ()
proach based on optimising the total description length of i
the training set, using the modélt]. SD(ming |I; — I,,|)
In section4.1we validate our approach to model evalua- oG = Jn—1 ) 4

tion by deliberately perturbing the correspondences in mod-
els built using manual annotation to establish correspon-

dence. In sectiod.2 we use our method of evaluationto X, @- Model examples - I,
X=Training Set - I;

compare models built using non-rigid registratidr,[11] o
and the minimum description length groupwise registration % 9 , Generalisation
approach of Twining et all[]. 2 < x ' Min,|I;- 1| X (]
. X0 @ ® &.
3. Appearance Model Evaluation X Xg @ Min JI,- 1]
. . ° s ® Specificity
Our approach to model evaluation is based on measur- ' X
ing, directly, key properties of the model. This approach is !

based on the work of Davies et &l] who defined speci-
ficity and generalisation ability for shape models. To be ef- Figure 2. Hyperspace representation of the model evaluation ap-
fective, a model needs the ability to generate a broad rangeroach.



Figure 1. The effect of varying the first model parameter of a facial appearance matielgtandard deviations.

whereI; is theit" training image,min, is the minimum to seek correspondence with a wider area around each pixel.
overa (the set ofsynthetidmages), and SD is standard de- Instead of taking the mean absolute difference between ex-
viation. That is, Generalisation is the average distance fromactly corresponding pixels, we take each pixel in one image
each training image to its nearest neighbour in the syntheticin turn, and compute thminimumabsolute difference be-
image set. A good model exhibits a low value of Generalisa- tween it and pixels in ahuffle neighbourhooof the exactly

tion, indicating that the modelled class is well-represented corresponding pixel in the other image. This approach is

by the model. less sensitive to small misalignments, and provides a more
robust measure of image distance. The sensitivity to mis-
3.2. Specificity alignment is determined directly by the size and shape of

the shuffle neighbourhood. One obvious choice is a square
sures the extent to which images generated by the modePO?( aro“r.‘d the correspondmg pixel, but th'.s IS mhergntly
anisotropic. Instead, we consider a shuffle disc, of radjus

are similar to those in the training set. A specific model which contains all pixels within a distaneeof th ntral
should generate a distribution of images that overlaps the .Xecl contains ail pixeis a distanceot the centra

training distribution as completely as possible. If we P ) )
take a synthetic image set such as that defined previously, Figure 3 shows examples of shuffle distance between
{I,:a=1,...m}, each synthetic image should be close an original image and a misaligned version evaluation, for

to an image in the training set. We define the Specifisity, ~ V&ying values of the radius. The effect of the shuffle
and its standard erras.g, as follows: neighbourhood radius on the sensitivity to misalignment

is obvious as the contribution to distance perceivably de-

The Specificity of a generative appearance model mea-

1< creases in areas of limited misalignment, as we go from
S=— > min |1; — Lo/, (5)  r = 0tor = 3.7 (roughly equivalent to & x 7 square
a=1 window).

o SD(mln, |IZ — Ia|) (6)
vm—1 ' 4. Experimental Evaluation
That is, Specificity is the average distance from each syn-
thetic image to the nearest training image. A good model
exhibits a low value of Specificity, indicating that it gener-

ates synthetic images, all of which are similar to those in
the training set.

gs

We demonstrate the proposed to approach model eval-
uation in two stages. Firstly, a set of validation experi-
ments are performed in which the behaviour of specificity
and generalisation ability are observed for a deliberate and
controlled degradation of a set of appearance models. The
approach is then applied to the problem of choosing an opti-
mal non-rigid registration algorithm for automatic construc-

The most straightforward way to measure the distancetion of appearance models.
between images is to evaluate the mean absolute difference
between them, or alternatively treat them as vectors by con-
catenating pixel/voxel values and take the Euclidean dis-
tance. Although this has the merit of simplicity, it does not
provide a very robust distance measurement. In the con-
text of model and image registration evaluation considered
here, these approaches result in measures of distance that ifFigure 3. Shuffle distance evaluatidreft: original imageRight:
creases rapidly, even for quite small image misalignments.warped imageCentre, from left to right: images showing con-
Robustness can be enhanced by considering a ‘shuffle distributions to shuffle distance, fer= 0 (abs. diff.} 1.5, 2.1 & 3.7
tance’, inspired by the ‘shuffle transforn?§]. The ideais  respectively.

3.3. Measuring Distances Between Images




4.1. Validation a3

The purpose of the validation experiment was to estab- - ;
lish if our measures of Specificity and Generalisation were “,’Hﬁv e
able to detect a known model degradation. We also wished 2z g oz ¥
to investigate the effect of varying shuffle radius. Exper- = r," PR e L
iments were performed using two very different data sets. D3 & ;,/ _
The first consisted of equivalent 2D mid-brain T1-weighted w / = Groupwise 1
slices obtained from 3D MR scans of 36 subjects. In each of 3 Groupwise 2
the images, a fixed number (167) of landmark points were d @ Pairwise
positioned ma}nually on key anatomical struc.tures (cortical A 4 3 19 1B
surface, ventricles, caudate nucleus and lentiform nucleus), Number of Model Modes
and used to establish a ground-truth dense correspondence 3 y -
over the entire set of images, using locally affm_e mterpol_a- 2 G + Groupwise 1
tion. The second consisted of 68 frontal face images with = = Groupwise 2
blacked out backgrounds (to avoid biasing the distance mea- = i -2 Pairwise
surements), with ground truth correspondence defined using 2 f‘g ]
68 landmark points positioned consistently on the facial fea- g 33 \\ﬁ
tures in each image. = \3 _

O 55 ;&\E i
34 - .

4 8 12 16 20
Number of Model Modes

Figure 5. Specificity and Generalisation of the three automatic
model construction approaches.

Figure 4.Left: Model constructed from ground-truth annotation.
Centre and right: models constructed with increasingly degraded ferent values of shuffle radius= 1.5. 2.1 and3.7. In each

registration. Variation of-2.50¢ about the mean in first three case,m — 1000 images were synthesised using the first
modes. U .
10 modes of the model, and Specificity and Generalisation

The first 3 modes of variation of the the face model built We'® th"i” iSti”;]ated- _ I )

using the ground-truth correspondence are shown in Fig- Xesults for the brain data are shown in FigGreEac

ure4 (left). Keeping the shape vectors defined by the land- point represents the average of 10 random instantiations of
mark locations fixed, smooth pseudo-random spatial warps,{N€ Perturbing warps. The results for the face data are sim-
based on biharmonic Clamped Plate Splines (CPS) werg!@l: and shown irv, but they are based on a single instan-
then applied to the training images. The warps were con-tiation of each warp, which results. in more noisy data. A_s
trolled by sets of 25 randomly placed knot-points, each dis- ©<Pected, Specificity and Generalisation both degrade (in-
placed in a random direction by a distance drawn from a Cr€ase in value) as the mis-registration is pro_gressn/_ely in-
Gaussian distribution. The relationship between the meancé@sed. [n most cases there is a monotonic relationship
of the displacement distribution and the mean pixel dis- betwe.en.SpecmC|ty/GeneraI|sat|on _and merI degrgdanon,
placement for the whole image was carefully calibrated. but this is not the case when Euclidean distance is used.

This allowed a controlled misregistration to be introduced 'Ot that there is a measurable difference in both measures,
even for fairly small perturbations to the initial registration

by changing the parameters of the displacement distribu- X
(e.g the model of Figurd (center)).

tion.

By increasing the warp magnitude, successively increas-
ing mis-registration was achieved. The mis-registered train-
ing images were used to construct degraded versions of We used our new method to evaluate three different mod-
the original model. Figurd (centre and right) shows the els built using an enlarged set of the brain data containing
models obtained using progressively degraded training datal04 affine aligned images. It has been shown previously

4.2. Application to Model Evaluation

Models degraded using a range of values of the mean pixel[14, 11] that an appearance model can be built by regis-
displacement (from the correct registration) were evaluatedtering each image in a set (pairwise) to a reference image.
using the method described in sectidn The image dis- In [16] it was argued that a 'groupwise’ approach which

tances used were Euclidean distances Q) and three dif-  took proper account of the whole set of images might be ex-
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pected to perform better. We built three models, one usingspondences obtained using ground truth, show that, using .,
the pairwise approach, and two variants of our groupwise specificity in particular, we are able to detect small changes .
approach. The results, including the effect of including dif- in model quality (due to sub-pixel displacments) reliably ..,
ferent numbers of modes in the models, are shown in Figureover a wide range of misregistration values. The results ..
5and demonstrate a clear advantage in terms of both Speciebtained for different sizes of shuffle neighbourhood show ..
ficity and Generalisation for both groupwise methods over that the use of shuffle distance rather than Euclidean dis- ..,
the pairwise approach. It was not possible to discriminate tance ensures monotonicity and increases the sensitivity of .,
between the two groupwise methods. the method. We have also shown that the approach is capa- .,
ble of detecting statistically significant differences between ..
5. Summary and Conclusions models based on different approaches to automated model .,
. y building. We believe that this work makes a valuable con- ..
We have introduced an objective method of assessinglfioution, by providing an objective basis for comparing dif- 5,
appearance models, that depends only on the model tJerent methods of constructing generative models of appear- .,
be tested and the training data from which it was gener- 2NC€- 538
ated. Validation experiments, based on perturbing corre- 539
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