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Non-rigid registration (NRR) of both pairs and groups of images has been used increasingly in recent
years, as a basis for medical image analysis. Applications include structural analysis, atlas matching and
change analysis. The problem is highly under-constrained and the plethora of different algorithms that have
been proposed generally produce different results for a given set of images. We present two methods for
assessing the performance of non-rigid registration algorithms applied to groups of images; one requires
ground truth to be provided priori, whereas the other does not. We compare the two approaches by
systematically varying the quality of registration of a set of MR images of the brain.

The first of the proposed methods for assessing registration quality uses a generalisation of Tanimoto’s
spatial overlap measure. We start with a manual mark-up of each image, providing an anatomical/tissue
label for each voxel, and measure the overlap of corresponding labels following registration. Each label
is represented using a binary image, but after warping and interpolation into a common reference frame,
based on the results of NRR, we obtain a set of fuzzy label images. These are combined in a generalised
overlap score [1]:
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where: indexes voxels in the registered imagésndexes the label and indexes image pairs.Ax;

and By,; represent voxel label values in a pair of registered images and are in the range [0, 1]. The
MIN() and M AX () operators are standard results for the intersection and union of fuzzy sets. The
generalised overlap measures the consistency with which each set of labels partitions the image volume.
The parametety; affects the relative weighting of different labels. With = 1, label contributions are
implicitly volume weighted with respect to one another. We have also considered the caseswvhere
weights for the inverse label volume (which makes the relative weighting of different labels equal), where

«; weights for the inverse label volume squared (which gives labels of smaller volume higher weighting)
and wherey; weights for a measure of label complexity (which we define arbitrarily as the mean absolute
voxel intensity gradient in the label).

The second method assesses registration in terms of the quality of a generative statistical appearance model,
constructed from the registered images — for all the experiments reported here, this was an active appear-
ance model (AAM). The idea is that a correct registration produces an anatomically meaningful dense
correspondence between the set of images, resulting in a better appearance model. We define model quality
using two measures — generalisation and specificity. Both are measures of overlap between the distribution
of original images, and a distribution of images sampled from the model. If we use the generative property
of the model to synthesise a large set of imadés,: « = 1,...m}, we can define Generalisatig#
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where| - | is a measure of distance between imadets thei*" training image, anehin,, is the minimum

over « (the set ofsyntheticimages). That is, Generalisation is the average distance from each training
image to its nearest neighbour in the synthetic image set. A good model exhibits a low valije of
indicating that the model can generate images that cover the full range of appearances present in the
original image set. Similarly, we can define Specificsty
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That is, Specificity is the average distance of each synthetic image from its nearest neighbour in the original
image set. A good model exhibits a low value $findicating that the model only generates synthetic
images that are similar to those in the original image set. The uncertainty in estinfaémgl S can

also be computed. In our experiments we have defijngdas the shuffle distance between two images.
Shuffle distance is the mean of the minimum absolute difference between each pixel/voxel in one image,
and the pixels/voxels in a shuffle neighbourhood of radiwsound the corresponding pixel/voxel in a
second image. When < 1, this is equivalent to the mean absolute difference between corresponding



pixels/voxels, but for larger values of the distance increases more smoothly as the misalignment of
structures in the two images increases.

The overlap-based and model-based approaches were validated and compared, using a dataset con-
sisting of 36 transaxial mid-brain slices, extracted at equivalent levels from a set of T1-weighted 3D MR
scans of different subjects. Eight manually annotated anatomical labels were used as the basis for the
overlap method: L/R white matter, L/R grey matter, L/R lateral ventricle, and L/R caudate. The images
were brought into alignment using an NRR algorithm based on MDL optimisation [2]. A test set of
different mis-registrations was then created by applying smooth pseudo-random spatial warps (based on
biharmonic Clamped Plate Splines) to the registered images. Each warp was controlled by 25 randomly
placed knot-points, each displaced in a random direction by a distance drawn from a Gaussian distribution
whose mean controlled the average magnitude of pixel displacement over the whole image. Ten different
warp instantiations were generated for each image for each of seven progressively increasing values of
average pixel displacement. Registration quality was measured, for each level of registration degradation,
using several variants of each of the proposed assessment methods.
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Figure 1. Behaviour of proposed metrics with increasing registration perturbation:
a) Generalisation, b) Specificity and c¢) Tantimoto overlap

The results of the validation experiment are shown in Figure 1. NoteQ®hatexpected to decrease
with increasing perturbation of the registration, whitseand.S are expected to increase. All three metrics
are generally well-behaved and show a monotonic response to increasing perturbation. This validates the
model-based measures of registration quality, which are shown both to change monotonically with increas-
ing perturbation of the registration and to correlate with the gold-standard approach based on manually
annotated ground truth.

The results for different values of(shuffle radius) andy; all demonstrate monotonic behaviour with
increasing perturbation, but the slopes and errors vary systematically. This affects the size of perturbation
that can be detected. To make a quantitative comparison of the different methods, we define the sensitivity,
as a function of perturbation ﬁ%) m="0 wherem is the quality measured for a given value of displace-
ment,m is the measured quality at registratiohis the degree of deformation a@ds the mean error in
the estimate ofn over the range.

Sensitivity averaged over the range of perturbations shown in Figure 1 is plotted in Figure 2 for all the
methods of assessment. This shows that the Specificity measure with shuffle radius 1.5 or 2.1 is the most
sensitive of the measures studied, and that this difference is statistically significant.
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Figure 2. The sensitivity of registration assessment methods.
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