Data-Driven Evaluation of Non-Rigid
Registration and Appearance Models

Abstract

The paper presents a generic approach, which us used assess the quality of appear-
ance models. Moreover, it is capable of evaluating different non-rigid registration
algorithms without any notion of ground truth. We base this approach on the
observation that a statistical appearance model can be constructed from a set
of non-rigidly registered images. Models can be evaluated by comparing images
generated by it with the image set from which it was constructed. The quality of
the model depends on the quality of its seminal registration, which means that
registration can be evaluated by constructing and evaluating models. Indices are
derived which reflect on model specificity and generalisation. It is then shown
that are negatively affected as a set of correctly registered images is progressively
perturbed. To demonstrate the practicality of these methods, different registra-
tion algorithms are compared in terms of performance.

1. Introduction

Non-rigid registration (NRR) is ubiquitously used as a basis for medical image
analysis. Its applications include atlas matching, analysis of change [6], and struc-
tural analysis. A variety of approaches to NRR exist and they differ in terms of
the objective function that defines mis-registration, the representation of spatial
deformation fields, and the approach used to minimize the mis-registration by
selecting good deformations. Most commonly, pairs of images are being registered
[21], though groups can be considered too [5]. This under-constrained problem
suffers from subjectivity of its solution. For any set of images to be registered,
the different approaches are likely to produce different results. One obvious way
to assessing solutions is by making use of the ground truth solution. Several
methods have been demonstrated which work along these lines [9, 11, 18, 16].
These methods require access to some form of ground truth. One approach in-
volves the construction of artificial test data, which limits application to ’off-line’
evaluation. Other methods can be applied directly to real data, but require that
anatomical ground truth be provided, typically involving annotation by an expert.
This makes validation expensive and prone to subjective error. As The correct
solution is indeed hard to obtain, assessment without ground truth appears highly
valuable.

Appearance model have been extensively used as the basis for interpretation
by synthesis. Such models are derived from sets of training images and they
capture statistics about variability in these sets. A set of images, which is used to
construct an appearance model, is directly related to its quality. When the images
are properly correspondent, the model is improved. As NRR aims to bring sets
of images to correspondence, the output of a good NRR algorithm builds a good
model.



The paper presents a method for evaluating models. In turn, this also enables
the evaluation of NRR which relies only on the image data, and can therefore
be applied routinely while oblivious to any form of ground truth. The method
relies on the fact that, for a given a set of registered images, a statistical model
of appearance can be constructed. When the registration is correct, the model
provides the most concise description of the set of images. As the solution to NRR
degrades, so does the performance of the model. Thus, the quality of registration
is affects on quality of the resulting model and evaluation of the two is mutual.

The remainder of this paper covers background on models and registration,
explains the methods, and presents results which support ideas being the method.
An example is then shown where models are advertently degraded, by mis-registering
their training set. Lastly, several registration algorithms are compared to demon-
strate one main application of our approach.

2. Background

2.1. Assessment of Non-Rigid Registration

A common approach to assessment of the results of NRR involves the generation
of test images. Such images are created by taking the original images and then
applying known deformations to them. The process of evaluation is based on
comparison between the deformation fields recovered by NRR and those which
have originally been applied [16, 18]. This type of approach can be used to test
NRR methods ’off-line’. It cannot, however, be used to evaluate the results when
the method is applied to real data as part of a registration-based analysis.
Another approach involves measuring the overlap between of anatomical anno-
tations before and after registration. Similar approaches involve measurement of
the mis-registration of anatomical regions of significance [9, 11], and the overlap
between anatomically equivalent regions obtained using segmentation, which is ei-
ther manual or semi-automatic [11, 16]. Although these methods cover a general
range of applications, they are labour-intensive and are often prone to errors.

2.2. Statistical Models of Appearance

Statistical models of shape and appearance (combined appearance models) were
introduced by Cootes, Edwards, Lanitis and Taylor [2, 3, 8], and have since been
applied extensively in medical image analysis [10, 14, 19]. The construction of
an appearance model depends on establishing a dense correspondence across a
training set of images using a set of landmark points marked consistently on each
training image.

Using the notation of Cootes [3], the shape (configuration of landmark points)
can be represented as a vector x and the texture (intensity values) represented as
a vector g.

The shape and texture are controlled by statistical models of the form

x =X+ P;by
XD M)
g=8g+Fgby
Where b, are shape parameters, b, are texture parameters, X and g are the mean
shape and texture, and P, and P, are the principal modes of shape and texture
variation respectively.
Since shape and texture are often correlated, we can take this into account in a
combined statistical model of the form



Fig. 1. The effect of varying the first, second, and third model parameters of a face
and brain appearance models by 2.5 standard deviations.
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where the model parameters ¢ control the shape and texture simultaneously and
Qs, Q  are matrices describing the modes of variation derived from the training
set. The effect of varying one element of ¢ for a model built from a set of 2D MR
brain image is shown in Fig. 1.

2.3. The Correspondence Problem

A very key step in construction of combined appearance models is that of
identifying dense correspondence across a given set of training images. This is
often achieved by marking up the training set by hand, simply identifying sig-
nificant points in the images and interpolating between these points. In recent
years, automation of this process was a problem of great interest. One approach
to solving this problem is to use NRR and bring the images to alignment by opti-
mising a similarity measure [10, 14]. A different approach refines initial estimates
of the correspondence so as to code the set of images in the most efficient way
[1]. We have recently outlined an approach which is based on optimising the total
description length of the training set, using its model [20].

In Section XX our approach is validated by deliberately perturbing the cor-
respondence in models, i.e. decreasing the registration. Such models were built
using manual annotation that establishes a reliable correspondence. In Section
XX our approach is used to compare common registrations methods [10, 14], as
well as our minimum description length approach.

3. Evaluation Method

This section presents the evaluation method which can assess registration in a
model-based fashion and, more broadly, it explains the use of the approach when
evaluating models of appearance.

3.1. Specificity and Generalisation

Our approach to model evaluation is based on directly measuring key properties
of a given model. An effective model is one which is able to generate a broad
range of example of the class of modelled images. This property is referred to as
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Generalisation ability. This property is not sufficient since the model must also
generate examples that are consistent with the class of modelled images. This
property is referred to as Specificity.

Our approach to the assessment of NRR relies on the close relationship between
registration and statistical model building, and extends the work of Davies et al.
on evaluating shape models [7]. We note that NRR of a set of images establishes
the dense correspondence which is required to build a combined appearance model.
Given the correct correspondence, the model provides a concise description of
the training set. As the correspondence is degraded, the model also degrades in
terms of its ability to reconstruct images of the same class, not in the training set
(Generalisation), and its ability to only synthesise new images similar to those in
the training set (Specificity). If we represent training images and those synthesised
by the model as points in a high dimensional space, the clouds represented by
training and synthetic images ideally overlap fully (see Fig. 2). Given a measure
of the distance between images (see next section), Specificity, S, Generalisation,
G, and their standard errors os and og can be defined as follows:
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where {I; : j = 1..m} is a large set of images sampled from the model, |- | is the

distance between two images and SD is standard deviation.

Both values are low for a good model. Specificity measures the mean distance
between images generated by the model and their closest neighbours in the train-
ing set, whilst Generalisation measures the mean distance between images in the
training set and their closest neighbours in the synthesised set. The approach is
illustrated diagrammatically in Fig. 3.
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Fig. 2. The model evaluation framework. A model is constructed from the training and
images are generated from the model. Each image is vectorised and can be visualised as
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Fig. 3. Representation in hyperspace of the model metrics calculation method

3.2. Measuring Distances in Between Images

The most straightforward way to measure the distance between images is to treat
each image as a vector formed by concatenating the pixel/voxel intensity values,
then take the Euclidean distance. Although this has the merit of simplicity, it
does not provide a very well-behaved distance measure since it increases rapidly
for quite small image misalignments. This observation led us to consider an alter-
native distance measure, based on the ’shuffle difference’, inspired by the ’shuffle
transform’ [12]. The idea is illustrated in Fig. 4. Instead of taking the sum of
squared differences between corresponding pixels, the minimum absolute difference
between each pixel in one image and the values in a shuffle neighbourhood around
the corresponding pixel is used. This is less sensitive to small misalignments, and
provides a more well-behaved distance measure.
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Fig. 4. The calculation of a shuffle difference image

4. Validation of the Approach

Each warps will on average shift a pixel a distance of 2-3(XX) pixels.

4.1. Perturbing Ground-Truth

We conducted a series of experiments to test the hypothesis that reduced regis-
tration accuracy can be detected using model specificity and generalisation. An



Fig. 5. An example of the shuffle difference image from one image to a second image
(left), from the second image to the first (centre), and the symmetrical shuffle distance
image (right)

Shuffle difference image  Training

Fig. x. An example of a shuffle distance image, computed from a training set face
image and an arbitrary model synthesis.

equivalent 2D mid-brain T1-weighted slice was obtained from each of 36 subjects
using a 3D acquisition. A fixed number (167) of landmark points were positioned
manually on the cortical surface, ventricles, caudate nucleus and lentiform nu-
cleus, and used to establish a ground-truth dense correspondence over the set
of images, using locally affine interpolation. A statistical appearance model was
constructed using the methods described in 4.3, with the set of landmark coordi-
nates forming the shape vector x for each image. Keeping the shape vectors fixed,
we then applied a series of smooth pseudo-random spatial warps to the training
images, resulting in successively increasing mis-registration. Each warp resulted
in an average point displacement of between one and two pixels. Specificity and
Generalisation results were obtained for 0, 1, 5, and 10 warps per image, using
m = 1000.

4.2. Effects of the Shuffle Transform

The experiment described in the previous section was repeated for shuffle neigh-
bourhoods of 1x1 (Euclidean distance), 3x3, 5x5, and 7x7, to test the hypothesis



Fig. x. A comparison between shuffle distance evaluation types. On the left: original
image; on the right: warped image; in the centre (from left): shuffle distance with
r = 0(absolute difference), 1.5,2.9 and 3.7.

Fig. x. Examples of registration degradation for 0 to 7 concatenated amooth CPS

warps. Euclidean distance to the original image is shown below.

that this would extend the range over which different degrees of mis-registration
could be discriminated.

Fig. 6. Specificity and Generalisation for increasing mis-registration of different shuffle
neighbourhood sizes.

4.3. Comparing Different Methods of NRR

A common task in medical image analysis is the estimation of correspondences
across a group of images, to allow mapping of effects into a common co-ordinate
frame when performing population studies. A widely used approach is to use a
non-rigid registration algorithm to map a chosen reference image onto each ex-
ample, defining the correspondence across the group [14]. However, it has been
argued [5] that this pairwise approach does not take advantage of the full informa-
tion in the group, and thus may lead to sub-optimal registration. We have been
investigating groupwise methods of registration which aim to make the best use
of the group as a whole when estimating the correspondence. We work within a
minimum description length (MDL) framework. The aim is to construct a statis-
tical appearance model which can exactly synthesize each example in the training
set as efficiently as possible [20]. It has been observed that the more the compact
the representation, the better the correspondences. The general approach is to
define a deformation field between reference frame and each training image. For
a given choice of sets of fields, one can compute the cost of encoding the images
(a combination of the coding cost of the model, the cost of the parameters and
the cost of residuals between the synthesized images and the training images).



The effect on this total description length of modifying the deformation fields can
be evaluated - the correspondence problem becomes a (very high dimensional)
optimisation problem. Within this general framework we compare three different
approaches (for details see [20]):

1. Pairwise registration, using the first image as a reference

2. Groupwise registration in which the reference model is just the current mean of
the shape and intensities across the training set, and no constraints are placed
on the deformations

3. Groupwise registration to the mean including a term encouraging a compact
representation of the set of deformations.

Though the algorithms will work in 3D, for the evaluation experiments we con-
centrate on a 2D implementation (allowing more large-scale experiments to be
performed). We have a dataset of 104 3D MR images of normal brains' , which
have been affine aligned and a single slice at equivalent location extracted from
each. Fig. 5 (left) shows examples of extracted slices. In order to evaluate the
different registration algorithms outlined above, we register the 104 2D slices using
the different techniques, construct statistical models from them and calculate the
specificity and generalisation measures.

5. Results

% sensitivity =22/5

Fig. 7. The calculation of sensitivity for measures of Generalisation and Specificity.

The results of the experiment to test the effect of increasing mis-registration are
shown in Fig. 6. These demonstrate that, for all sizes of shuffle neighbour-
hood, the specificity and generalisation values increase (get worse) with increasing
mis-registration®. The results for different sizes of shuffle neighbourhood demon-
strate that the range of mis-registration over which distinct values of specificity
and generalisation are obtained increases as the neighbourhood size increases.
The results of the comparison between three different methods of NRR are
shown in Fig. 9. These show that, particularly in terms of specificity, we can

1 The age matched normals in a dementia study generously provided by X (anonymised).
2 Except that Generalisation is unstable for a 1x1 shuffle neighbourhood (Euclidean dis-
tance).
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Fig. 8. Sensitivity of Generalisation for face data where registration degrades.

distinguish between the three approaches, with the fully groupwise method per-
forming best, as anticipated. A model built using this approach is shown in Fig.
8.

6. Discussion and Conclusions

We have introduced a model-based approach to assessing the accuracy of non-rigid
registration, without the need for ground truth. The validation experiments, based
on perturbing correspondences obtained using ground truth, show that we are able
to detect increasing mis-registration using just the registered image data. The re-
sults obtained for different sizes of shuffle neighbourhood show that the use of shuf-
fle distance rather than Euclidean distance improves the range of mis-registration
over which we can detect significant changes in registration accuracy. We have also
shown that the approach is capable of detecting statistically significant differences
in registration accuracy between three different (plausible) approaches to NRR.

We believe that this represents an important advance in the assessment of
NRR, because it establishes an entirely objective basis for evaluating the relia-
bility of NRR-based experiments, and for comparing the performance of different
methods of NRR. The fact that no ground truth data is required means that the
method can be applied routinely. Further work is needed to compare the results
obtained using our new approach with those obtained using more sophisticated
segmentation-based methods of evaluation.
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Fig. 9. Sensitivity of Specificity for face data where registration degrades.
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Fig. 11. Specificity (with corresponding error bars) of brains as their registration
degrades

Fig. 12. The first mode of an appearance model of the brain whose training set was
subjected to deformation. +2.5 standard deviations are shown.
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Fig. 14. Appearance model which was built automatically by group-wise registration.
First mode is shown, £2.5 standard deviations.
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Fig. 15 Registration evaluation which compares 3 different registration algorithms.
Specificity is shown on the left and generalisation ability on the right. Values are the
mean over a wide range of modes in the model. SEE BELOW — MERGE?
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Fig. 16. Specificity and generalisation of the three registration methods.



