A Generic Method for Evaluating Appearance
Models

Abstract

Generative models of appearance have been studied extensively as a basis
for interpretation by synthesis. Typically, these models are learnt from sets
of training images and are statistical in nature. Different methods of repre-
sentation and training have been proposed, but little attention has been paid
to evaluating the resulting models. We propose a method of evaluation that
is independent of the form of model, relying only on the generative prop-
erty. We define the specificity and generalisation ability of a model in terms
of distances between synthetic images generated by the model and those in
the training set. We validate the approach, using Active Appearance Models
(AAMs) of face and brain images, and show that specificity and generalisa-
tion degrade monotonically as the models are progressively degraded. We
compare two different inter-image distance metrics, and show that shuffle
distance performs better than Euclidean distance. Finally, we compare three
different automatic methods of constructing appearance models, and show
that we can detect significant differences between them.

1 Introduction

Interpretation by synthesis has become a popular approach to image interpretation, be-
cause it provides a systematic framework for applying rich knowledge of the problem
domain. Active Appearance Models (AAMs) [1, 2] are typical of this approach. There
are two essential components: a generative model of appearance, and a method for search-
ing the model space for the instance that best matches a given target image. In this paper
we concentrate on the first of these.

Generative models of appearance are generally statistical in nature, and derived from
training sets of images. AAMSs use models that are linear in shape and texture. Their
construction relies on finding a dense correspondence between images in the training
set, which can be based on manual annotation or on an automated approach (see below).
Other approaches to constructing appearance models include methods based on non-linear
manifolds in appearance space [3] and kernel PCA [4]. Tn the remainder of the paper
we restrict our attention to AAMs, but the methods presented could be applied to any
generative appearance model.

There has been relatively little previous work on model evaluation. One approach is to
test a complete interpretation-by-synthesis framework, providing an implicit evaluation of
the models themselves. This requires access to ground truth, allowing interpretation errors
to be quantified [8, 1]. The most serious weakness of this approach is that it confounds the
effects of model quality and the behaviour of the search algorithm. The need for ground



truth data is also undesirable, because it is labour intensive to provide and can introduce
subjective error.

We propose a method for evaluating appearance models, that uses just the training set
and the model to be evaluated. This builds on the work of Davies et al [6], who tackled
the simpler problem of evaluating shape models. Our approach is to measure, directly, the
similarity between the distribution of images generated by the model, and the distribution
of training images. We define two measures: specificity — the overlap of the distribution
of model-generated images with the distribution of training images, and generalisation
ability — the overlap of the distribution of training images with the distribution of model-
generated images. We validate the approach by generating progressively degraded mod-
els, demonstrating that both specificity and generalisation also degrade, monotonically.
We also apply the method to a real model evaluation problem.

2 Background

2.1 Statistical Models of Appearance

Statistical models of shape and appearance (combined appearance models) were intro-
duced by Cootes, Edwards, Lanitis and Taylor [1, 2], and have since been applied exten-
sively (eg [14, 11, 10]). The construction of an appearance model depends on establish-
ing a dense correspondence across a training set of images using a set of landmark points
marked consistently on each training image.

Using the notation of Cootes [2], the shape (configuration of landmark points) can be
represented as a vector x and the texture (intensity values) represented as a vector g.

The shape and texture are controlled by statistical models of the form

x =X+ P.b,

— 1
g=g+Pb, M

Where by are shape parameters, b, are texture parameters, X and g are the mean shape and
texture, and Py and P,, are the principal modes of shape and texture variation respectively.
Since shape and texture are often correlated, this can be taken into account in a combined
statistical model of the form

x =X+ Qqc

g=g+Qc @

where the model parameters ¢ control the shape and texture simultaneously and Qy, Q,
are matrices describing the modes of variation derived from the training set. The effect of
varying one element of ¢ for a model built from a set of face images is shown in Figure 1.

2.2 The Correspondence Problem

A key step in building a combined appearance model is that of establishing a dense corre-
spondence across the set of training images. In practice, this is often achieved by marking
up the training set manually with a set of key landmarks and interpolating between them.



Figure 1: The effect of varying the first model parameter of a facial appearance model by
+2.5 standard deviations.

Recently there has been considerable interest in automating this process. One approach
is to use non-rigid registration methods developed for use in medical image analysis, to
align the images by optimising a measure of image similarity [14, 11]. An alternative
approach refines an initial estimate of correspondence so as to code the training set of
images as efficiently as possible [5]. We have recently described an approach based on
optimising the total description length of the training set, using the model [16].

In section 4.1 we validate our approach to model evaluation by deliberately perturbing
the correspondences in models built using manual annotation to establish correspondence.
In section 4.2 we use our method of evaluation to compare models built using non-rigid
registration [14, 111 and our own minimum description length approach.

3 Appearance Model Evaluation

Our approach to model evaluation is based on measuring, directly, key properties of the
model. To be effective, a model needs the ability to generate a broad range of examples
of the class of images that have been modelled. We refer to this as Generalisation ability.
Although this property is necessary , it is not sufficient. We also require that the model
can only generate examples that are consistent with the class of images modelled. We
refer to this as Specificity. We define both of these measures by comparing the distri-
bution of training images and the distribution of images generated using the model. An
overview of the approach is given in Figure 2. Any image can be considered as a point in
a high-dimensional space (defined by it’s intensity values). The training set forms a cloud
of points in such a space. If we sample from the model, we generate a second cloud of
points in this space. For an ideal model, the two clouds are coincident. We define Gener-
alisation and Specificity in terms of the distance from each training image to the nearest
model-generated image, and the distance from each model-generated image to the nearest
training image. We discuss the choice of an appropriate distance metric in section 3.3.

3.1 Generalisation

Generalisation of a model defines its ability to generalise to or represent well images of
the modeled class both seen (in the training set) and unseen (not in the training set). A
model that comprehensively captures the variation in the modeled class of object should
be close, i.e. exhibit low distance, to all the images from that class). In practice this
means that all the training examples used to construct the model should be close to model
distribution sampled by the model geneted synthetic examples. Given the framework
defined for evaluation of specificity above, i.e. a large set of synthetic example images
sampled from the model {I; : j = 1..m} and a measure of the distance between images |- |,
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Figure 2: Hyperspace representation of the model (metric) evaluation approach

Generalisation G of a model and the standard error on its measurement o can be defined
as follows:

;N
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1.e. it is the average distance from each training image to its nearest neighbour in the image

set generated by the model. Once again, good models exhibit low values of Generalisation
indicating that the modelled class is well-represented by the model.
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3.2 Specificity

Specificity of an appearance model defines its ability to generate realistic, new examples
of the modelled class. A model that correctly describes the variation within an object class
should be able to produce new examples of the class that would appear realistic compared
to the original training set used to create the model. Conversely, a degraded model would
be unable to articulate the main modes of object appearance and would only produce new
examples disparate from the original training set. This definition is used to practically
measure Specificity. Specificaly, given {I;: j = 1..m} as a large set of synthetic example
images sampled from the model and having the same distribution, Specificity S is defined
as the average distance between each of the synthetic examples and it closest neighbour
in the original training set:

1 m
S=— Y min|li—1Ij|. &)

where I; is the ith training image, |- | describes the distance between two images and
SD is the standard deviation. Equivalently, the standard error in the measurement oy is
thus:

SD(minj ‘Ii — Ij|)

vm—1 ©
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Generally, for a good model the Specificity is low as the images generated by the
model are similar (low distance) to original training examples. Conversely, as a model
degrades the generated examples get further away from the training examples increasing
the distance and consequently Specificity.

3.3 Measuring Distances Between Images

The most straightforward way to measure the distance between images is to evaluate the
absolute difference between them, or alternatively treat them as vectors by concatenating
pixel/voxel values and take the Euclidean distance. Although this has the merit of sim-
plicity, it does not provide a very robust distance measurement. In the context of model
and image registration evaluation considered here, such direct measurement results in a
distance that increases rapidly even for quite small image misalignments. Robustness can
be added to the distance evaluation by considering a “shuffle difference’, inspired by the
’shuffle transform’ [15]. The idea is to seek correspondence with a wider area around
each pixel. Instead of taking the mean absolute difference between corresponding pixels,
the mean of minimum absolute difference between each pixel in one image and pixelsin a
shuffle neighbourhood around the corresponding pixel in the other is used. This approach
is less sensitive to small misalignments, and provides a more robust image distance evalu-
ation. Furthermore, the sensitivity to misalignment is directly determined by the size and
type of the shuffle neighbourhood. One obvious choice is a square box around the corre-
sponding pixel. A more even treatment of the local region is provided by a shuffle disc,
of radius r, that only considers pixels located within r of the central pixel. Examples of
shuffle distance evaluation with varying r between two brain examples, the original image
and missaligned version, are shown in Figure 3. The effect of the shuffle neighbourhood
radius on the distance misalignment sensitivity is obvious as the distance perceivably de-
creases in areas of small missalignment and becomes less noisy as we go from r = 0 to
r = 3.7 (roughly equivalent to a 7x7 square window).

Figure 3: Shuffle distance evaluation: left - original image , right - warped image, centre
from left: distance with r = 0 (abs diff), 1.5, 2.9 and 3.7

4 Experimental Evaluation

The proposed model evaluation approach is demonstrated in two stages. In the first in-
stance, a set of validation experiments are performed where the beheviour of the metrics is
observed for a deliberate and controlled degradation of set of appearance models. The ap-
proach is then practically demonstrated on the problem of choosing an optimal non-rigid
registration algorithm for automatic construction of appearance models.



4.1 Validation

The purpose of the validation experiment was to establish if our measures of Specificity
and Generalisation were able to detect a known model degradation. The effect of varying
shuffle radius. Experiments were performed using tow very different data sets. The first
consisted of corresponding 2D mid-brain T1-weighted slices obtained from 3D MR scans
of 36 subjects. In each of the images, a fixed number (167) of landmark points were posi-
tioned manually on key anatomical structures (cortical surface, ventricles, caudate nucleus
and lentiform nucleus), and used to establish a ground-truth dense correspondence over
the entire set of images, using locally affine interpolation. The second consisted of 68
frontal face images with blacked out backgrounds (to avoid biasing the distance measure-
ments) with ground truth correspondence defined using 68 landmark points positioned
consistently on the facial features in each image.

Figure 4: Model constructed from ground-truth annotation: left, and models constructed
with increasingly degraded registration: centre and right(variation of £2.56y)in first three
modes

The first 3 modes of variation of the the face model built using the ground-truth corre-
spondence is shown in Figure 4(left). Keeping the shape vectors defined by the landmark
locations fixed, a series of smooth pseudo-random spatial warps, based on bi-harmonic
Clamped Plate Splines (CPS) were then applied to the training images, resulting in suc-
cessively increasing mis-registration — see Figure 5. The average pixel displacement from
the original is shown below each image. Visually the warps vary from hardly noticeable (1
or 3 warps) to gross distortion (20 warps). The mis-registered training images were used
to construct degraded versions of the original model. Figure 4(centre and right) shows the
models obtained using 1 and 11 concatenated CPS warps respecively.

Models degraded using 1,2,3,5,8,11 and 15 concatenated CPS warps were evaluated
using the method described in section 3, using Euclidean distance (r = 0)and three dif-
ferent values of shuffle radius r = 1.5, 2.9 and 3.7. In each case, m = 1000 images were
synthesised using the first 10 modes of the model, and Specificity and Generalisation were
estimated.

Results are shown for the brain data in Figure 6. The results for the face data were
similar. As expected, Specificity and Generalisation both degrade (increase in value)
as the mis-registration is progressively increased. Tn most cases there is a monotonic
relationship between Specificiity/Generalisation and model degradation, but this is not
the case when Euclidean distance is used. Note that there is a measurable difference in
both metrics, even for very small registration perturbations (eg the model of 4(center)).

The lack of monotonicity in the results for Euclidean distance already suggests that
the use of shuffle distance gives better results. To investigate this further we calculated the



Figure 5: Registration degradation examples for 0,1,3,5,11 and 20 concatenated smooth
CPS warps with Euclidean distance to the original below

sensitivity of each method — defined as (average slope of Specificity/Generalisation)/(average
standard error) — for each value of image warp. The results for the face data are shown

in Figure 6(bottom). The results for the brain data were similar. This shows a very sig-
nificant advantage with increasing shuffle distance, suggesting that better discrimination
between models is possible if shuffle distance is used.

4.2 Application to Model Evaluation

We used our new method to evaluate three different models built using an enlarged set
of the brain data containing 104 affine aligned images (ground truth was not required for
this experiment). It has been shown previously [14, 11] that an appearance model can
be built by registering each image in a set (pairwise) to a reference image. Tn [16] we
argued that a *groupwise’ approach that took proper account of the whole group might
be expected to perform better. We built three models, one using the pairwise approach,
and two variants of our groupwise approach. The results, including different numbers
of modes in the models, are shown in Figure 7 and demonstrate a clear advantage in
terms of both Specificity and Generalisation for both groupwise methods over the pairwise
approach. It was not possible to discriminate between the two groupwise methods.

5 Summary and Conclusions

We have introduced an objective method of assessing appearance models that depends
only on the model to be tested and the training data from which it was generated. Valida-
tion experiments, based on perturbing correspondences obtained using ground truth, show
that we are able to detect increasing model degradation relaiably. The results obtained for
different sizes of shuffle neighbourhood show that the use of shuffle distance rather than
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Figure 6: Specificity and Generalisation (with error bars) of registration degraded brain
models (top row) and corresponding sensitivity evaluated on face data

Euclidean distance ensures monotonicity and increases the sensitivity of the method. We
have also shown that the approach is capable of detecting statistically significant differ-
ences between models based on different approaches to automated model building. We
believe that this work makes a valuable contribution, by providing an objective basis for

comparing different methods of constructing generative models of appearance.
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