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Abstract
Models of appearance are powerful tools for capturing data variability and they are

capable of synthesising data. Such models have been shown to posses rich ’knowledge’
of what data within a set comprises and the way such data can be decomposed and hence
simplified. A framework was developed which is able to evaluate appearance model. It
is able to tell apart models of varying quality, thereby promoting better algorithms for
construction of appearance models. The method also allows the validation of models. By
measuring ’distances’ between images, it quantifies the proximity between a model and its
data. To measure distance between images, a shuffle transform is used, which is robust.
Two separate measures reflect on the quality of an entire model, given a large matrix of
distances. Specificity measures how well data generated by the model fits data from which
the model was constructed, whereas generalisation compares data from which the model
was constructed and data generated by the model. The methods were shown to work well
when applied to face data and MR brain data. In both cases, progressively perturbed models
were correctly analysed by our measures. The framework was used to compare models of
the brains, which were built automatically. Models which are known to be superior were
merited by the framework.

1 Introduction
When approaching the problem of image interpretation, one has several paradigms for
solving it. One such paradigm is the modelling of objects and the use of models to learn
something about an object. Along this simple approach, shape models [3] were developed
and they assisted in analysing contours of objects in an image. The natural extension to
shape models was one which encapsulated intensity information, as well as contours.
The work of Edwards et al. [4] brought about models which were capable of synthesising
photo-realistic images.

Following the success of this approach, several groups have built appearance mod-
els using different methods and obtained results of differing quality. Stegmann [5], for
example, reproduced algorithms for appearance model construction and extended them
to account for 4-D models that include the dimension of time. Rueckert et al. [14]
have taken this approach and embedded it in registration algorithms so that statistical
deformation models are built subsequent to registration.

Davies et al. [2] have adopted a method for the evaluation of shape models, i.e.
the derivation of values for a given shape descriptor. This was done by a minimum
description length [16] approach, which relates to the simplicity of a model. Ever since,
the method allowed evaluation and comparison between shape models – possibly built
by different algorithms – to be compared. Furthermore, it enabled the formation of an
information-theoretic objective function. Such as objective function, when treated an an
optimisation problem, allowed optimal shape models to be constructed.

While methods of evaluation are available for shape models and, therefore, quantita-
tive comparison is possible, none is available for appearance models. Since appearance



models are far more complex and far heavier than shapes (as they include texture infor-
mation), a method has been thought for evaluating them and arguing about their validity.

This paper outlines a successful method for the evaluation of appearance models. The
method is shown to be well-behaved and its applicability to faces and brains is illustrated.
Furthermore, it is used to compare different methods of model construction, all of which
do so without need for manual mark-up of the data. Finally, it is shown that the method
is able to correctly distinguish between models that appear identical to the naked eye.

2 Background

0.1. Active Appearance Models

The task of image analysis, especially in the bio-medical domain, must take into
consideration the variation in shape and appearance of objects. The invariant presumption
is that corresponding objects in all images are of one particular class so we can typify the
contents of the image by training an entity that captures inter-subject variation as well as
atrophies.

Statistical analysis of shapes [3] which obtains a model of deformation goes back a
decade ago. The principles were later extended to sample the variation in pixel intensities
(also commonly referred to as textures) to create a model of full variation that is able to
synthesise full appearances [4] and their successful application to medical data has been
frequently demonstrated [5]. The correlations between shape and intensity are learned
using Principal Component Analysis [6] where much of the power of these principles
lies.

0.2. The Correspondence Problem

The integrity of models breaks down if correspondences, annotated in the form of
spatial landmarks, are inappropriately identified. Furthermore, the annotation process
involves a preliminary segmentation process which highlights parts of the data where
landmarks can and should be placed. Although this has become a solved problem in
statistical modeling of shape, it is yet difficult to select good landmarks in images which
strive to retain full appearances rather than contours or surfaces solely. Several attempts
have been made to resolve the issue [7, 8, 9], but none was optimal or even quite satis-
factory. Alignment has become the means by which this crucial limitation can be solved
and the foundations of image registration assist in establishing this alignment.

Figure x: Shuffle distance... First mode of appearance model,
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standard deviations.

0.3. Image Registration

In the medical domain, one of the more fundamental problems is the requirement for
the setting of images in a state which makes them appear collectively similar [10]. This
greatly simplifies the analysis of a group of images which bear common information,
as in the case of brain slices fusion or comparison of patient data, either acquired using
different modalities or collected at different time instances.



The problem is trivial if the difference is a rigid one – a difference due to rotation,
scale and translation. More realistically, the problem is far more complex and images are
inconsistent (primarily in the case of inter-subject registration) so affine and non-rigid
transformations are required. In the case of non-rigid registration, transformation is
merely unbounded. However, to avoid corruption and distortion of constituent finer
parts of the image, limitations to their freedom and certain conditions must be met.
Clamped-plate splines (CPS), which are based on Green’s function, have proven to be
a useful family of warps, allowing for highly flexible manipulation of images. Their
attributes are reminiscent of those developed by Lötjönen and Mäkelä [11].

To drive transformation in the right direction and attain convergence, minimisation
of the difference perceived in the images must be pursued. To measure discrepancies, or
contrariwise, the similarity between two images, mean of squared differences (MSD) or
mutual information (MI) [12] are traditionally used as metrics although new techniques
are perpetually introduced [13].

Overall, the process of registration comprises the transformation of images followed
by similarity measures, where transformations are chosen to iteratively maximise that
similarity. Conventionally, a reference is selected in the process [14], but our contention
is that this need not be the case if an optimal solution is sought. The technique according
to which the registration problem will be solved is entirely described by the objective
function as Section 4 illustrates.

3 Experiments

3.1 Shuffle Distance

Change illustrative figures that are the same so that they appear distinct.

Figure x:

Similar to MICCAI
Cannot tell the difference of the 15 models (neither can you?, send 16 pictures). Al-

gorithm can. Added CPS from 0 to 15. Existing CPS stayed in place, maybe try more in
future and see plots trend.

Figure x: First mode of 5 cps

3.2 Model Evaluation

In order to measure the quality...



Figure x: First mode of 10 cps

Figure x: First mode of 15 cps

3.3 Normalisation
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Figure x: Model built from correctly-annotated images

Figure x: Model built from correctly-annotated images with each image affected by 3
warps

4 Results
Experiments... then results...
Face landmark points have been perturbed by noise. The magnitude of noise is de-

fined by a standard distribution and the value sigma of that distribution varies.
To put the algorithm in a challenging position, images were warped while land-

mark points remained the same. This obtained fuzzier models, but models that appear
merely identical. To control the amount of noise, a progressively-increasing number of
clamped-plate splines (REF) was applied to all images. All previous warped remained
unchanged since the previous passes for stability, but since warps can improve models
as well as degrading them, monotonous were not expected. The trend, however, was ex-
pected to show the movement of the images around the points resulted in worse models,
as one would expect.

In the case of the brains, an even greater amount of warps was applied to see the effect
in a larger scale. The data used was MR-..... brains obtained from.... aligned affinely and
sliced....

5 Summary and Conclusions
The evaluation of appearance models becomes practical through the use of large sets

of data. Fitting the many possible cross-pairings of data and model instance leads to
measures which are robust independently of data properties. Results have been shown
for brain data as well as a challenging set of face data and graphs have always appeared
encouraging. The evaluation method relies upon a distance measure between a pair of
images and measures such as shuffle distance appear most suitable to handle the task.

Figure x: Model built from correctly-annotated images with each image affected by 6
warps



Figure x: Generalisability and Specificity of models with an increasing amount of defor-
mation

Figure x: The framework of normalisation. Two sets of training data, one which is real
and one which is synthesised are compared to model-generated examples.

The method able to compare similar models and distinguish between them success-
fully. This was shown to be the case when models were corrupted intentionally, but also
in cases where models and their quality were poorly understood. In such circumstances,
the method was able to provide answers and be used for benchmarking. It appears to
suggest that registration in a group-wise manner results in better models of appearance.
This opens the door to a framework which validates registration. The observation which
motivates it is that correct registration identifies the correspondence perfectly, and there-
fore builds optimal models.
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Figure x: Two face images and the resulting shuffle difference image with neighbourhood
of size 3 3 3 shuffle Figure x: Shuffle difference image of the brain 3 3 3.
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