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F
IGURE 1 shows a breakdown of our existing framework. For the sake

of simplicity, the block diagram contains only core components that are

used irrespective of the approach tested. The �le loaders, for example, are

shown separately. They work very well and can elegantly load datasets based

on a data selector. With the exception of test sets that are small (remnants of

debugging), there are 6 families of data, some grouped in pairs, some grouped

by training/target, some for GIP data in isolation, others for FRGC data.

There are also correct and incorrect matches in isolation. These simplify the

plotting of ROC curves in a largely streamlined fashion.

The nose-�nding part may as well be treated as a component that provides

orientation o a form of segmentation (it can be a face or even an internal

organ which we wish to model and perform binary diagnosis on). Depending

on the datasets, di�erent methods are used. Commonly, FRGC data is better

o� interpreted by �nding nearest point, excepting noise. For GIP data, it

is preferable to choose the nearest point within a speci�ed region (usually

around the centre, no weighting/scoring based on location although that too

would work). This can also be done using ICP, as described later (settings

inherited from another box/module) or a Viola-Jones approach with face

templates for training, although it is only partly implemented so far. Sphere
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intersection with plane, as per Mian et al. (with separate slider for radius),

is another existing option, but it does not appear to outperform the simpler

methods, which work most of the time given some reasonable boundaries

(e.g. boundaries to dodge the hair region).

Having identi�ed the tip of the nose correctly, we are cropping out what is

left for rigid areas to be isolated. It is quite customisable. Various separation

methods and boundary types like circle, ellipsoid, and rectangle have been

tested, where circle is the most commonly used one that works in conjunction

with binary masks. These come with many sliders and use measurements in

X and Y to estimate real physical distances and then factorise pixel-space

units, accordingly. There is also a slider for further manual tweaking.

There are some other bits of operation that are worth mentioning; left

out from the diagram in order to reduce clutter are smoothers, hole removers,

outlier eliminators, and rounding up of values, all of which are optional and

very much depend on the data at hand and how it ought to be treated. For

instance, FRGC data hardly requires any smoothing. GIP data has o�sets

that need to be handled systematically depending on the image number. In

fact, both datasets do need a lot of branching/forking in the code as their

handling and even their size varies (the program is built to handle any image

side with any aspect ratio, but for sub-regions to be de�ned it uses absolute

and not relative coordinate inputs).

Then we come to the key part, which actually does more to contribute

toward similarity measures. ICP becomes very important in case the initial

alignment of the noses is deemed incorrect or the faces are tilted. In prac-

tice, assuming the faces are forward-looking and bend neither to the sides

or top/bottom, ICP is not supposed to change much. The methods already

available are Mian's early ICP method, Mian's most recent ICP method, Ra-

viv's ICP implementation from 2008, and Raviv/Rosman ICP implementa-

tion from recent months or years. The program optionally applies translation

and optionally it applies the rotation too. In many cases this does not seem
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necessary as ICP hardly modi�es anything substantial.

The model part is not included in the diagram as there are many dif-

ferent things are can be done with a model. PCA, model-building, model

assessment, �le loaders for models (about 2 gigabytes for some), in addition

to more basic measures on which assessment is applied, are basically all sorts

of comparators which yield one value for each pair, then proceeding to the

plotting of ROC curves (mostly automated following experimental design).

The results so far completely neglect to account for expression di�erences,

which clearly appear in all the pairs and need to be handled somehow. If

removal of expression can be done gracefully, then we expect to have nearly

identical faces, bar matters of scale. Figure 2 shows an example where the

di�erences around the mouth are huge and contribute a lot to the scale

of dissimilarity (which uses quadratic penalty). Since the images are from

the same person, we should ideally observe a smoother surface around the

jaw. One approach would be to warp out the expression. It can be done

by learning the residual's relationship to the residuals model (which Mian

et al. built with 3,000+ images from their lab) and then work with it in

reverse. Alternatively, there are many methods that can be tested. All of

them ought to surpass the baseline performance, which is expectedly low as

it compares elastic regions from same/di�erent people with entirely di�erent

facial expressions.
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Figure 1: Depiction of the framework for detection and classi�cation of 3-D
data such as faces, as well as benchmarking
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Figure 2: The �rst correct pair (neutral and non-neutral) from the dataset
as it appears in residual mode
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