Data-Driven, Entropy-Based Measures
for Assessing Non-Rigid Registration

Abstract

We present a method for assessing the performance of non-rigid registration al-
gorithms, without the need for any form of ground truth. The method exploits
the fact that, given a set of non-rigidly registered images, a generative statistical
appearance model can be constructed. The quality of the model depends on the
quality of the registration, and can be evaluated by comparing images sampled
from it with the original image set. We derive a measure which is is based on
Shannon’s entropy and show that it demonstrates the loss of registration as a set
of correctly registered images is progressively perturbed. We also show the tight
correlation between our newly-proposed method and an overlap-based measure,
which is based on ground-truth anatomical labels of the brain.

1. Introduction

Over the past few years, non-rigid registration (NRR) has been used increasingly
as a basis for medical image analysis. Applications include structural analysis,
atlas matching and change analysis [5]. Many different approaches to NRR have
been proposed, for registering both pairs and groups of images [3, 19]. These differ
in terms of the objective function used to assess the degree of mis-registration,
the representation of spatial deformation fields, and the approach to minimizing
the mis-registration with respect to the deformations. The problem is highly
under-constrained and, given a set of images to be registered, each approach will,
in general, give a different result. This leads to a requirement for methods of
assessing the quality of registration.

Various methods have been proposed for assessing the results of NRR [8, 10,
16, 15]. Most of these require access to some form of ground truth. One approach
involves the construction of artificial test data, which limits application to ’off-line’
evaluation. Other methods can be applied directly to real data, but require that
anatomical ground truth be provided, typically involving annotation by an expert.
This makes validation expensive and prone to subjective error.

In this paper we present a method for evaluating the results of NRR that
relies on the image data alone, and can thus be applied routinely without the
need for ground truth. The method is based on the observation that, given a set
of registered images, it is possible to construct a statistical model of appearance. If
the registration is correct, this provides a concise description of the set of images.
If it is incorrect, the performance of the model degrades. We base our assessment
of the quality of registration on the quality of the resulting model, which can be
evaluated using an entropy-based approach.

In the remainder of the paper we explore the background, explain the method
in detail, and present validation results using data for which the correct registra-
tion is known.



2. Background

2.1. Assessing Non-Rigid Registration

One approach to assessing the results of NRR is to create a set of test images
by taking original images and applying known spatial deformations. Evaluation
involves comparing the deformation fields recovered by NRR to those known to
have been applied [15, 16]. This approach can be used to test a given NRR method
‘off-line’, but cannot be used to evaluate the results when the method is applied
to real data as part of a registration-based analysis.

An alternative approach involves measuring the coincidence of anatomical an-
notations following registration. Variants of this approach include measuring the
mis-registration of anatomical landmarks [8, 10], and the overlap between anatom-
ically equivalent regions obtained using manual or semi-automatic segmentation
[10, 15]. These methods are of general application, but are labour-intensive and
error prone.

This paper will use a generalised overlap-based approach to provide a ’gold
standard’ method of assessment. The method requires manual annotation of each
image — providing an anatomical/tissue label for each voxel — and measures the
overlap of corresponding labels following registration, using a generalisation of
Tanimoto’s overlap coefficient. Each label for a given image is represented using a
binary image but, after warping and interpolation into a common reference frame
based on the results of NRR, we obtain a set of fuzzy label images. These are
combined in a generalised overlap score [4], which provides a single figure of merit
aggregated over all labels and all images in the set:
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where 7 indexes voxels in the registered images, [ indexes the label and k
indexes the two images under consideration. Agj;; and Byy; represent voxel label
values in a pair of registered images and are in the range [0, 1]. The MIN() and
M AX () operators are standard results for the intersection and union of a fuzzy set.
This generalised overlap measures the consistency with which each set of labels
partitions the image volume. The parameter «; affects the relative weighting of
different labels. With a; = 1, label contributions are implicitly volume weighted
with respect to one another. We have also considered the cases where a; weights
for the inverse label volume (which makes the relative weighting of different labels
equal), where oy weights for the inverse label volume squared (which gives labels
of smaller volume higher weighting) and where «; weights for a measure of label

complexity (which we define as the mean absolute voxel intensity gradient in the
label).

2.2. Statistical Models of Appearance

Statistical models of shape and appearance (combined appearance models) were
introduced by Cootes, Edwards, Lanitis and Taylor [1, 2, 7], and have since been
applied extensively in medical image analysis [9, 13, 17]. The construction of
an appearance model depends on establishing a dense correspondence across a
training set of images using a set of landmark points marked consistently on each
training image.



Using the notation of Cootes [2], the shape (configuration of landmark points)
can be represented as a vector x and the texture (intensity values) represented as
a vector g.

The shape and texture are controlled by statistical models of the form

x =X+ P,by
_ 2
g=g+Pyby ()

where by are shape parameters, b, are texture parameters, X and g are the mean
shape and texture, and P, and P, are the principal modes of shape and texture
variation respectively.

Since shape and texture are often correlated, we can take this into account in a
combined statistical model of the form

x =X+ Q,c
_ 3
g =8+ Qe 3)
where the model parameters ¢ control the shape and texture simultaneously and
Qs, Qg are matrices describing the modes of variation derived from the training
set. The effect of varying one element of c for a model built from a set of 2D MR
brain image is shown in Fig. 1.

Fig. 1. The effect of varying the first model parameter of a brain appearance model by
+2.5 standard deviations.

3. Model-Based Evaluation

3.1. Model Entropy

Our approach to the assessment of NRR relies on the close relationship between
registration and statistical model building, and extends the work of Davies et al.
on evaluating shape models [6]. We note that NRR of a set of images establishes
the dense correspondence which is required to build a combined appearance model.
Given the correct correspondence, the model provides a concise description of the
training set. As the correspondence is degraded, the model also degrades in terms
of its ability to reconstruct images of the same class, not in the training set, and
its ability to only synthesise new images similar to those in the training set. If
we represent training images and those synthesised by the model as points in a
high dimensional space, the clouds represented by training and synthetic images
ideally overlap fully (see Fig. 2). The two clouds can be inter-connected to form a
graph. Given a measure of the distance between images (see next section), graph
entropy and its standard errors [11] can be defined as follows:

EQ1 (4)

Error = EQ2 (5)



where {I; : j = 1..m} is a large set of images sampled from the model, |- | is the
distance between two images and SD is standard deviation.

Entropy is used as a measure of model compactness. A good model will gen-
erate images which are similar to its training set and thus, inter-image distances
will be small (entropy values are low for a good model).

Entropy estimates the distance between images generated by the model and
their closest neighbours in the training set, but it can also estimates the mean
distance between images in the training set and their closest neighbours in the
synthesised set. The approach is illustrated diagrammatically in Fig. 3.

Training set
Xo eModel instances

X

<

=]

£

3

5

3

& X.

£ Synthetic set 2
Fig. 3. The model evaluation framework. Fig. 2. Training set and model
Each image in the training set is compared synthesis in hyperspace

against every image generated by the model

3.2. Measuring Distances in Between Images

The most straightforward way to measure the distance between images is to treat
each image as a vector formed by concatenating the pixel/voxel intensity values,
then take the Euclidean distance. Although this has the merit of simplicity, it
does not provide a well-behaved distance measure since it increases rapidly for
quite small image misalignments. This observation led us to consider an alter-
native distance measure, based on the ’shuffle difference’, inspired by the ’shuffle
transform’ [12]. The idea is illustrated in Fig. 4. Instead of taking the sum of
squared differences between corresponding pixels, the minimum absolute difference
between each pixel in one image and the values in a shuffle neighbourhood around
the corresponding pixel is used. This is less sensitive to small misalignments, and
provides a more well-behaved distance measure.

4. Validation of the Approach

4.1. Perturbing Ground-Truth

We conducted a series of experiments to test the hypothesis that reduced registra-
tion accuracy can be detected using model entropy. An equivalent 2D mid-brain
T1-weighted slice was obtained from each of 37 subjects using a 3D acquisition.
Fixed binary labels were positioned manually on the right- and left-hand-side grey
matter, white matter, lateral ventricles, and caudate nucleus. These labels were
used to establish ground truth for our overlap-based assessment approach.



Fig. 4. The calculation of Fig. 5. An example of the shuffle difference
a shuffle difference image image (right) when applied to two MR slices (left)

The images and their accompanying labels were then non-rigidly registered using a
groupwise, minimum description length-based algorithm. A statistical appearance
model was constructed using the methods described in Section 2. It used the
set of landmark coordinates, which had been extracted from the registration, to
form the shape vector x for each image. We then applied a series of warps,
based on biharmonic clamped-plate splines, to the training images and labels,
resulting in successively decreasing registration. Each warp resulted in increased
displacement, which corresponds to degraded NRR performance. Entropy results
were obtained for a range, using m = 1000. Corresponding results were obtained
for the overlap-based method, which used the resampled anatomical labels to
assess label overlap.

The intent of these validation experiments was to show that the model-based
approach lies in tight agreement with the overlap-based approach, which uses
ground truth.

4.2. Effects of the Shuffle Transform

The experiment described in the previous section was repeated for shuffle neigh-
bourhoods with radii of 1 (Euclidean distance), 1.5, 2.1, and 3.7, to test the hy-

pothesis that this would extend the range over which different degrees of mis-registration

could be discriminated.
IMAGE entropy | IMAGE overlap

Fig. 6. [CHANGE TO ENTROPY - ISBI experiments| increasing mis-registration of
different shuffle neighbourhood sizes.

4.3. Comparing Entropy-Based Assessment and Ground Truth

IMAGE entropy | IMAGE overlap

Fig. 6. [CHANGE TO ENTROPY - ISBI experiments] increasing mis-registration of
different shuffle neighbourhood sizes.

By super-imposing the plots obtained by the different assessment methods, one
should able to see the agreement and disagreement. Also of interest is the ability
to discern between the sensitivity of the two measures, namely entropy and label
overlap fraction.



5. Results

The results of the experiment which test the effect of increasing mis-registration
are shown in Fig. X. These demonstrate that, for all sizes of shuffle neighbour-
hood, entropy values increase (get worse) with increasing mis-registration, with
few exceptions at the start (minor misalignments). The results for different sizes of
shuffle neighbourhood demonstrate that the range of mis-registration over which
distinct values of entropy are obtained increases as the neighbourhood size in-
creases.

6. Discussion and Conclusions

We have introduced a model-based approach to assessing the accuracy of non-rigid
registration, without the need for ground truth. The validation experiments, based
on perturbing correspondences obtained using ground truth, show that we are able
to detect increasing mis-registration using just the registered image data. The re-
sults obtained for different sizes of shuffle neighbourhood show that the use of shuf-
fle distance rather than Euclidean distance improves the range of mis-registration
over which we can detect significant changes in registration accuracy. We have
also shown that this approach is a good surrogate to the generalised overlap mea-
sure, which is an assessment method representative of ground-truth-dependent
ASSESSOrs.

We believe that this represents an important advance in the assessment of
NRR, because it establishes an entirely objective basis for evaluating the relia-
bility of NRR-based experiments, and for comparing the performance of different
methods of NRR. The fact that no ground truth data is required means that the
method can be applied routinely. Further work is needed to compare the results
obtained using our new approach with those obtained using more sophisticated
segmentation-based methods of evaluation.
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