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Abstract

We consider the problem of estimating the overlap between two data clouds in a high-dimensional
hyperspace. In order to do so, we measure the distance (shuffle or Euclidean) between each possible
pairing of points, where each point corresponds to one data instance encoded as a vector. A large
collection of points shapes the cloud from which they are sometimes derived in a process that involves
generative point distribution models. For any point in a given cloud A, we compute its distance to each
example in another cloud B and vice versa. All these distances can be arranged in the form of a matrix,
which can then be analysed to estimate the level of overlap between these two clouds of data. The
principles of entropic graphs are used to infer complexity from the relationships embedded in the matrix.
In our attempts to compute entropy, there is a level of uncertainty involved. We are most concerned
about the error in the calculation, but we also consider an error which is the side-effect of repeating
the experiments with multiple and distinct instantiations. Each instantiation, which is derived using the
same stochastic process, tends to entail slightly different values. The document explains the derivation
of these errors, as well as the calculation of entropy itself.

1 Calculating the Entropy

E
ntropy is a measure of uncertainty, which can often be used to assess the complexity among data
patterns. In the context of our experiments, entropy is used to estimate the complexity of clouds of

data by treating and interpreting them as a connected graphs.
Distance between point in the data clouds form a matrix. That matrix can in turn be evaluated for its

complexity using an extended idea that is related to Shannon’s entropy. In the context of data clouds, we
seek to identify the level of point dispersion, as well as the correlation of that dispersion when two Gaussian
distributions are involved.

As a simplistic example, we consider a spherical normal distribution in hyperspace. We consider yet
another such distribution and let it gradually drift away from the first. We can then estimate the entropy
of the two distributions, the joining of these, and come up with a certain measure of similarity. We observe
a well-behaved decrease as the clouds gradually differ, as expected.

The formulation we use to calculate entropy involves the notion of a graph
�

and and a symbol for
entropy, � . It also involves the two data clouds, which in the name of simplicity, we shall refer to as � and�

. For the two clouds, we may assume for the sake of the argument, that we have obtained the distances
between all points which they comprise of.

Our estimation of overall entropy is as follow:
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More latterly, we replaced our antiquated and confusing notation. In practice, we ought to replace � with& � , which corresponds to the word “synthetic”. In our experiments, we tend to deal with synthetic images
that are generated from a model of appearance (combining shape and intensity). �'��	(�) �
#" is also known as&
*

, whose size is arbitrary and can be extended at will.
&+*

used to be merely a subset of the full set
&-,

,
but it must not be contained in

&
,
. It is only derived from the same model as

&
,
so it is not the case that&
*/.0&1,

. Likewise, and even more strictly, no instance in
&2*

should be contained in
&
,

.
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We can extend the number of
&-*

’s to consider in order to improve our estimations, whenever/if time
permits. Ultimately, we are left with a graph which shows the formulation to be rather helpful. The
calculation of entropy itself is as follows:
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where 476 is the distribution (of varying density) ,
DNE

is the length of the graph,
=

is a value that lies
between 0 and 1 and const is an unimportant constant, at least at this stage.

2 Calculating the Error

There remains an uncertainty which is due to the varying value of the graph length. That error propagates
to the overall, larger-scale calculation as listed in Equation 1. This leads to imbalance in the value of entropy.
The error can be estimated in the following way: for each of the entropy ’sub-components’ above, entropy is
estimated which is dependent on the graph distance. Thus, considering the standard error

O � D EP Q � 8 (3)

where N is the number of instantiation used for error estimation. In line with rules for error propagation
in logarithms
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This gets applied to both cloud comparisons. Then, in order to combine the contribution of both entropies
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�3�5476 $ together with O ������	�
 provide the final estimation of entropy and its level of (un)certainty.
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