Othello Master - Application

Documentation

Roy Schestowitz

Contents

1 Callbacks

2 Computation
3 Drawing

4 Hashing

5 Loaders

6 Misc

7 Omcore

1 Callbacks

e void load (int menuentry)

Description:
the load game submenu callback function
Inputs:
the callback value
e void save (int menuentry)
Description:
the save game submenu callback function

Inputs:

the callback value
e void determinism__ callback (int menuentry)

Description:

the determinism callback function

e void edit_board_ callback(int menuentry)

March 10th, 2003

10

11

1.

Callbacks

Description:
board editing submenu callback function
Input:

the callback value

e void customise_ callback (int menuentry)

Description:
customised computation submenu callback function
Input:

the callback value

e void open_ report (char *filename)

Description:

opens the file where a game report would be appended

e void open_log file (char *filename)

Description:

opens a log file displaying some initial information
Input:

the name of the log file to be created

e void opening library _callback (int menuentry)

Description:
the opening moves library submenu callback function
Input:

the callback value

e void report_callback (int menuentry)

Description:
the report generation submenu callback function
Input:

the callback value

e void log_file callback (int menuentry)

Description:
the log file submenu callback function
Input:

the callback value

o void difficulty description_ callback (int menuentry)

Description:

the difficulty description submenu callback function

1. Callbacks

Input:

the callback value
e void difficulty callback (int menuentry)

Description:
the difficulty submenu callback function
Input:
the callback value
e void gamemode_ callback (int menuentry)
Description:
the game mode submenu callback function
Input:
the callback value
e void menu (int menuentry)
Description:
the menu callback function
Input:
the callback value

e void mouse (int button, int state, int x_wval, int y_val)

Description:

reacts to mouse events sensibly
e void idlefun ()

Description:

carries out operations when OpenGL is idle
e void automated moves (void)

Description:

gets the CPU to play a move when necessary
e void display (void)

Description:

the main display loop. Called from main() to do all the drawing to the frame buffer
e void reshape (int w, int h)

Description:
the reshape callback function
Input:

w and h which are the new width and height allocated to the frame by the window manager

2. Computation 4

e void mouse_motion (int z, int y)

Description:

a callback function that is invoked upon an event of a mouse move
e void keyboard (unsigned char key, int x, int y)

Description:

the keyboard callback function. Invoked when a key is pressed

2 Computation

o board_map make_nth_best move (board _map inputboard, int color, int priority)

Description:

makes the Nth best move for color given N

Input:
the board that is dealt with, the color for which the move is carried out and the priority n where
1 is best choice

Returns:

the board after the move was carried out
e int get _mobility of color (board_map inputboard, int color)
Description:

gets the number of moves available

Input:

the board that is dealt with and the color for which the number is calculated
Returns:
the number of moves available
e int evaluate straight lines complete (board_map input_board, int color)
Description:
calculate the value of the complete straight lines on the given board
Input:
the board that is dealt with and the color for which the value is calculated
Returns:
the value of the lines
e int evaluate diagonal lines complete (board _map input_board, int color)
Description:
calculate the value of the complete diagonal lines on the given board

Input:

the board that is dealt with and the color for which the value is calculated

Computation

Returns:

the value of the lines
e int evaluate_straight_lines_incomplete (board_map input_board, int color)

Description:

calculate the value of the incomplete straight lines on the given board
Input:

the board that is dealt with and the color for which the value is calculated

Returns:

the value of the lines
e int evaluate diagonal lines incomplete (board_map input_board, int color)

Description:

calculate the value of the incomplete diagonal lines on the given board
Input:

the board that is dealt with and the color for which the value is calculated

Returns:

the value of the lines
e int evaluate lines (board_map input_board, int color)

Description:

calculates the value of the line occupancy for color gap in a given board
Input:

the board that is dealt with and the color for which the value is calculated

Returns:

the value required
e int calculate_mobility _difference _of board (board_map inputboard, int color)

Description:
calculates the mobility value gap in a given board
Input:
the board that is dealt with and the color for which the advantage is calculated

Returns:

the mobility gap in board (positive if color’s mobility is higher)
e int calculate score difference of board (board_map inputboard, int color)

Description:

calculates the score gap in a board
Input:

the board that is dealt with and the color for which the advantage is calculated
Returns:

the score gap in board (positive if color’s score is higher)

Computation 6

e int find_value_of position (int i, int j, int color)
Description:
finds the value of position i,j standing for A-H and 1-8.
Input:
the board coordinates ranging from 1-8 and the current color for randomisation reasons

Returns:

the value of the position inquired
e int evaluate (int color, board_map input_board)

Description:

evaluates the current position of the board from the point of view of color and assumes that color
is currently up

Input:
the color for which the evaluation is carried out and the state of the board

Returns:

the evaluation value
e board_map compute_move_for color (board_map inputboard, int color)

Description:

computes a complex move for a given colour
Input:

the colour of player whose turn it is, input board
Returns:

the board with the new stone put
o int random_ number (int N)

Description:

returns a random integer between 0 and N
e int zero _one_random (void)

Description:

returns 0 or 1 randomly
e int load_opening library _file(char *filename)
Description:
load an opening library of Othello Master from a file given a filename
Entry:
filename is a pointer to the characters of the file to open

Returns:

true if save operation was successful, false otherwise

e void init_opening library (void)

3. Drawing

Description:

initialises the opening hashtable library
e char* find_board_state ident (void)

Description:

assigns the distinct identifier to a board state
e void cpu_ move (int color)

Description:

makes a move on behalf of color using the CPU

3 Drawing

e void drawString (void *font, float x, float y, char *str)

Description:

draws a string in a given (x,y) position on the window

Entry:
— *font points to a given font defined by GLUT
— *str is the pointer to the string to be displayed
— x is the x-coordinate for the string to be drawn at
— y is the y-coordinate for the string to be drawn at
Exit:

the pointer at *str is unchanged as well as *font
e void draw_scene (void)

Description:

draws the scene in which the game takes place

4 Hashing

e void error (char *message)
e void fatal error (char *message)
o Index sec_hash (Key Type key)

Description:

secondary hash function
o Table initialize _table (Table_ size table_size)

Description:

initialise a table of given size

4. Hashing

e int find_pos_for (Key Type key, Table H)

Description:

find Pos_For a key in a hash table. Uses linear probing
e int find (Key Type key, Table H)

Description:

see if key is in hash table
e int getX (Key Type key, Table H)

Description:

get X value of table entry
e int getY (Key Type key, Table H)

Description:

get Y value of table entry
e Table insert (Key Type key, Table H, int the X, int the_ Y)

Description:

insert a key in a hash table
o Table delete (Key Type key, Table H)

Description:
delete a key from the hash table

e Table rehash (Table H)

Description:

rehashing function
e void print_table (Table H)

Description:

prints out the given table
e static Index hash (Key Type key, Table size H SIZE)

Description:

load a game of Othello master from a file given a filename
Entry:

filename is a pointer to the characters of the file to open
Returns:

true if save operation was successful, false otherwise

5. Loaders

5 Loaders

o GLubyte * glmReadPPM (char *filename, int *width, int *height)

Description:
loads a PPM file
Entry:
— *filename is a pointer to the string holding a filename to open
— *width is a pointer to some address where image width will be stored
— *height is a pointer to some address where image height will be stored

Exit:

width and height are pointers to image dimensions
e int save_game_to_filename (char *filename)

Description:

saves a game of Othello master on a file
Entry:

filename point to filename string
Returns:

true if save operation was successful, false otherwise
e int save_game (int slot_number)

Description:

saves a game of Othello master on a slot
Entry:

slot number

Returns:

true if save operation was successful, false otherwise
e int load_game (int slot_number)

Description:

load a game of Othello master from a file given a slot number
Entry:

slot number
Returns:

true if save operation was successful, false otherwise
e int load_game_ from_ filename (char *filename)

Description:

load a game of Othello master from a file given a filename
Entry:

filename is a pointer to the characters of the file to open
Returns:

true if save operation was successful, false otherwise

6. Misc 10

6 Misc

e int reducible (int i, int j, int color, board_map board)

Description:

determines whether a move/placement is legal for a given colour/side in an i,j coordinate on the
board

Inputs:

color of the player whose turn it is; the i and j board coordinates which are virtually the X,Y
position of the board at which the stone is to be put (progressing left to right, top to bottom);
the board to be dealt with

Returns:

boolean indicating is the placement is legal or not
e void calculatescore (void)

Description:

calculates the current score for red and black
e board_map reduce (int i, int j, board_map board)

Description:

a function used to do all the Othello-wise reductions and substitutions in colours of the objects.

Inputs:

the coordinates of the last stone put, according to which the correct reductions can be carried
out; the board to be dealt with

Returns:

the new layout of the board
e void calculate_ mobility (void)

Description:

calculates mobility of both sides
e void check_ deadlock (void)

Description:

checks if a deadlock has occurred in which case the game has reached an end or turn passed (if
mobility of current side is 0)

e void finishoff (void)

Description:

called when the game has reached an end and declares the result
e void file_draw_ascii_board (board_map board, FILE * file)

Description:

puts an ASCII representation of the board on the log file

7. Omcore

11

Inputs:
the input board and the file pointer

void close_log file (void)

Description:

closes the log file when a game is finished and displays the game score
void add_to_report (void)

Description:

adds the given game to a report file

Omecore

void adjust_look at_center (void)

Description:

sets the camera to point to the X,Y,Z origin
void draw_ objects (void)

Description:

draws the stoned that are dynamically changing their layout
void inithoard (void)

Description:

initialises the board when a new game begins
void initmenu (void)

Description:

sets up the menu and takes care of the entries and their callback value
void init ((void)

Description:

initializes the program. This function is called once at bootstrap
void draw _ascii_board (board_map board)

Description:

draws an ASCII representation of the board

Inputs:
the input board

void annotate_board (void)

Description:

annotates the overhead main view

7. Omcore 12

e void annotate_help (void)

Description:

annotates the help screen
e void annotate_ difficulty (void)

Description:

displays the description of the algorithm used
e void annotate (void)

Description:

adds text on top of the scene depending on which view is enabled
e void set_name_of player (char *name)

Description:

called when the name of the player is entered and to record that name

Inputs:

the pointer to the characters representing that name
o void display _debugging instructions(void)

Description:

Prints some brief debugging instructions
o void display_help (void)

Description:

displays the command line option to the user and quits
o void process_ command_line (int arge, char *arguf])

Description:

a function to process the command line arguments inputs - the arguments and the number of
arguments

o void set_ difficulty(char *diff)

Description:

sets up the difficulty of player 2
e void set_up stat_mode_difficulty(char *diff)

Description:

sets up the difficulty of player 1 when gathering statistics
e int main (int arge, char **argv)

Description:

the main function. called when the program is started.

7. Omcore

13

Inputs:

the arguments and the number of arguments from the command line
e void quit_game (void)

Description:

the main exit procedure. Close any connection and files here.

