MATLAB GUI Tips

Collated advice on construction of user
interfaces

R. S. Schestowitz
Imaging Science and Biomedical Engineering
Stopford Building
University of Manchester
United Kingdom

May 18th, 2004

WARNING: Written on a sole afternoon (roughly 2.5 hours). Typos
are expected as well as solutions that are not optimal.

Contents
1 Introduction
2 Starting Point

3 Commonly Used Code
3.1 RadioButtons
3.2 CheckBoxes,
3.3 Drop-downMenus
3.4 Sliders

3.5 Menultems
4 GUI Editing

5 Final Word

1 Introduction

From a command-line-driven operation of MATLAB code, many of us
migrate to perform tasks while hiding the unnecessary clutter and
technicality that lies underneath. Interfacing is concerned with simpli-
fication of entry points to the code and encapsulation of its functional
behaviour. And what better way to do so than by employing a graphi-
cal front-end? This is what this document will focus on — the ability to
embed functions within a graphical user interface (GUI).

The document is intended to provide a step-by-step description while
concentrating on useful tips and tricks that make GUI construction
more trivial. With the aid of GUIDE (the GUI development environ-
ment), even GUI construction itself is controlled by a GUI. However,
no prior knowledge of GUIDE will be assumed and principles will form
the majority of arguments and suggestions.

On the issue of technicality and formality, this document intentionally
avoids the use of jargon and should be readable by people who have no
background of computer science or mathematics. The instruction are
meant to remain clear and concise so that GUI’s can be constructed
most rapidly.

2 Starting Point

Let us assume that a function my function has been created and it takes
a series of arguments (e.g., argl,arg2 and so on). A call to this function
will either produce a result (visual or numerical typically) or return
data of some sort to the command-line (or command window). What is
the difference between the two? Simply, the former makes the function
a stand-alone list of commands that cannot be easily combined with
other code. In the case of GUTI’s, these usually appear the appropri-
ate entity to start off with. The exception is the case where our GUI
should be used by another auxiliary application; but this case will not
be considered here any further.

Let us illustrate with an example. The function draw_some_plot is is
set to produce a plot and do nothing more. The code for such a file
(draw_some_plot.m) may be:

plot(rand(10));

Now all we wish to do is to call this function from a graphical win-
dow which may, for example, contain just a button to invoke our func-
tion. The rather intuitive GUIDE (it can be simply started by typing
in guide) that is based on Java, makes the placement of GUI elements
an obvious step to follow. For information on the use of any GUI gener-
ation tool, see the relevant documentation and help files.

This then leads us to the concept of callbacks. These are functions
that will be called once an event in some GUI occurs. Once a callback
has been assigned to an object, the control flow of the program will
be passed to the assigned callback. If a button has been assigned the
callback named do_action, then once we press that button, the code
under do_action will be executed. Going back to the example above,
sensible code to put under this function will be just the statement:

draw_some_plot;

which will then draw the plot, assuming paths have been defined prop-
erly. We now have covered some dry and embarrassingly fundamental
grounds. The next few section describe some of the interesting things
that can be done to increase the functionality of the user interface
quickly and wisely (in practice, I never got that far).

3 Commonly Used Code

The following aims to present some code which is repeatedly used and
establishes what is expected from objects.

4

3.1 Radio Buttons

Where a group of buttons is inter-related, the following code should do:

set(handles.optionl, ’'Value’, 1);
set(handles.option2, 'Value’, 0);
set(handles.option3, 'Value’, 0);

where optionl is the source of the callback. For the other options, the
only part which needs changing is the latter one where the state of the
button is defined by a zero or a one.

3.2 Check Boxes

A naive yet useful implementation of those will involve an element
state which hold some information about the state of the checkbox or
its meaning.

if (get(handles.state,'Value’) == 0),
set(handles.checkbox, 'Value’, 0);
set(handles.state, ’'String’, '0");

else
set(handles.checkbox, 'Value’, 1);
set(handles.state, 'String’, '1’);

end

3.3 Drop-down Menus

In the following, the menu object needs to first be identified using:

contents = get(hObject, String’);

Subsequently, the menu entry needs to be checked for extraction and
setting of information.

if (strcmp(contents{get(hObject, Value’)},'MenuEntryl’)),
set(handles.data, 'String’, 'Datal’);
elseif (strcmp(contents{get(hObject,'Value’)},'MenuEntry2)),
set(handles.data, 'String’, 'Data2’);
else
msgbox(Error with menu callback. Parameter passed is not recognised.’);
end

This should record the menu selection appropriately.

3.4 Sliders

The following code will fetch the quantised value of the slider and as-
sign it to a new object called slider_value.

set(handles.slider_value, ’'String’, num2str(ceil(get(handles.slider, 'Value))));

3.5 Menu Items

For items that need to be ticked and unticked, the following can be
useful.

set(handles.menuitem1, 'Checked’, 'off);
set(handles.menuitem2, 'Checked’, 'off’);
set(handles.menuitem3, 'Checked’, ’off’);
set(handles.menuitem4, 'Checked’, 'on’);
set(handles.menu_selection, 'String’, ’item4’);

6

4 GUI Editing

More efficient work on the code can be done by opening all relevant files
in advance. I personally write M-files to open all relevant windows at
the start. Set up a file which includes the following lines:

edit <m-filel> <m-file2>...
guide <fig-filel> <fig-file2>...

where of course the files listed are these which are frequently worked
upon.

5 Final Word

The document was adapted from notes whose essence is given in Sec-
tion 3 onwards. As I earlier stated, it is meant to be useful more than
eloquent and hopefully assist people who are new to callback function
constructions. Comments are very welcome, most preferably via E-
mail.

